

Android
Programming for
Beginners
Third Edition

Build in-depth, full-featured Android apps starting
from zero programming experience

John Horton

BIRMINGHAM—MUMBAI

Telegram Channel @IRFaraExam

Android Programming for Beginners – Third
Edition
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Associate Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Rohit Rajkumar
Senior Editor: Keagan Carneiro
Content Development Editor: Divya Vijayan
Technical Editor: Shubham Sharma
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Jyoti Chauhan

First published: December 2015
Second edition: October 2018
Third edition: April 2021

Production reference: 1080421

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80056-343-8

www.packt.com

Telegram Channel @IRFaraExam

http://www.packt.com

Contributors

About the author
John Horton is a programming and gaming enthusiast based in the UK. He has a passion
for writing apps, games, books, and blog articles. He is the founder of Game Code School.

Telegram Channel @IRFaraExam

About the reviewers
Brandon Kitt is a 24-year-old mobile app developer and enthusiast. He has worked on all
kinds of projects, ranging from Java, Kotlin, Flutter, and a list of other non-mobile-specific
applications, and is passionate about modern development and set on simplifying and
accelerating all development processes.

Brandon believes architecture, simplicity, and innovation are the building blocks of all
great apps and the core foundation they are laid on.

Through self-learning and an eye for clean, readable, and maintainable code, Brandon
has furthered his education, exploring new technologies and toolkits that are released
exceptionally quickly in the mobile development industry, to take full advantage of those
changes in the process of making modern, attractive apps.

Brandon's always available for partnership and collaboration whenever and wherever
possible. You can reach Brandon on LinkedIn, Facebook, or on hotmail at brandon.kitt.

Mohammed Fathy is a creative software engineer. He does what is possible with code
in order to make life more efficient for people. He has been in the software engineering
business for over 10 years, building new and innovative solutions for top companies in
many countries. He works with Java and Kotlin to build Android apps.

Telegram Channel @IRFaraExam

Table of Contents
Preface

1
Beginning Android and Java

Technical requirements 2
What's new in the third edition? 3
Why Java and Android? 3
The beginner's first
stumbling block 4
How Java and Android
work together 5
Understanding the Android API 6
Java is object-oriented 7
Run that by me again – what
exactly is Android? 9
Android Studio 9

Setting up Android Studio 10
What makes an Android app? 13

Android resources 13

The structure of Android's Java
code 14
Packages 14
Classes 15
Methods 15

Building our first Android app 16
Deploying the app so far 21
Running and debugging the app on
an Android emulator 22
Running the app on a real device 25

Frequently asked questions 27
Summary 27

2
First Contact: Java, XML, and the UI Designer

Technical requirements 30
Examining the logcat output 30
Filtering the logcat output 31

Exploring the project Java and
the main layout XML 31

Examining the MainActivity.java file 32
Examining the app layout file 35

Adding buttons to the main
layout file 39
Adding a button via the visual designer 40
Adding a button by editing the XML code 45

Telegram Channel @IRFaraExam

ii Table of Contents

Giving the buttons unique id attributes 47
Positioning the two buttons in the layout 48
Making the buttons
call different methods 51

Leaving comments in
our Java code 51

Coding messages to the user
and the developer 52
Writing our first Java code 53
Adding message code to the onCreate
method 54
Writing our own Java methods 56

Frequently asked questions 59
Summary 60

3
Exploring Android Studio and the Project Structure

Technical requirements 62
Project Explorer
and project anatomy 62
Exploring the file and folder
structure of the Empty Activity
project template 63
Exploring an Empty Activity project 64

Exploring the file and folder

structure of the Basic Activity
project template 79
Exploring a Basic Activity project 80
Exploring the Android emulator 89
Emulator control panel 89
Using the emulator as a real device 90

Summary 93

4
Getting Started with Layouts and Material Design

Technical requirements 96
Finding out about
Material Design 96
Exploring Android UI design 97
Introducing layouts 98
Creating and exploring a layout project 98
Building a layout with LinearLayout 99
Adding a LinearLayout layout type
to a project 100
Preparing your workspace 101
Examining the generated XML 102
Adding a TextView to the UI 103

Wiring up the UI with the Java code
(Part 1) 108
Adding layouts within layouts 110
Making the layout look pretty 115
Wiring up the UI with Java code (Part 2) 117

Building a precise UI with
ConstraintLayout 117
Adding a CalendarView 117
Adding and constraining more UI
elements 123
Making the text clickable 127

Telegram Channel @IRFaraExam

Table of Contents iii

Laying out data with
TableLayout 128
Adding a TableRow element to
TableLayout 129

Organizing the table columns 132

Linking back to the main menu 134
Summary 135

5
Beautiful Layouts with CardView and ScrollView

Technical requirements 138
Attributes quick summary 138
Sizing using dp 138
Sizing fonts using sp 139
Determining size with wrap or match 140
Using padding and margin 142
Using the layout_weight property 143
Using gravity 145

Building a UI with CardView and
ScrollView 146

Setting the view with Java code 147
Adding image resources 147
Creating the contents for the cards 149
Defining dimensions for CardView 152
Adding CardView to our layout 153

Creating a tablet emulator 158
Frequently asked question 161
Summary 161

6
The Android Lifecycle

Technical requirements 164
The life and times of an Android
app 164
How Android interacts with our
apps 164
A simplified explanation of the
Android lifecycle 165
The lifecycle phases demystified 166

How we handle the lifecycle
phases 167
Lifecycle demo app 170

Coding the lifecycle demo app 170
Running the lifecycle demo app 173
Examining the lifecycle demo app
output 174
Some other overridden methods 176

The structure of Java code –
revisited 178
Introducing fragments and the
lifecycle 179
Summary 180

Telegram Channel @IRFaraExam

iv Table of Contents

7
Java Variables, Operators, and Expressions

Technical requirements 182
Java is everywhere 182
Understanding Java
syntax and jargon 183
More code comments 184

Storing and using data with
variables 185
Types of variables 187

Using variables 192
Variable declaration 192
Variable initialization 193

Changing values in variables

with operators 194
The assignment operator 194
The addition operator 194
The subtraction operator 195
The division operator 195
The multiplication operator 195
The increment operator 196
The decrement operator 196

Trying out expressions 197
Expressing Yourself demo app 197

Summary 200

8
Java Decisions and Loops

Technical requirements 202
Making decisions in Java 202
Indenting code for clarity 202
More operators 203
How to use all these operators to test
variables 206

Switching to make decisions 210
The switch demo app 211

Repeating code with loops 213
while loops 215
do while loops 218

for loops 220
Loops demo app 221
Summary 225

9
Learning Java Methods

Technical requirements 228
Methods revisited 228
What exactly are Java methods? 228

Method structure 229
Modifier 230
Return type 231
Name of the method 233

Telegram Channel @IRFaraExam

Table of Contents v

Parameters 234
The body 235

Using method demo apps 236
Real-world methods 236

Exploring method overloading 239

Scope and variables revisited 242
Method recursion 243
Questions 246
Summary 247
Further reading 248

10
Object-Oriented Programming

Technical requirements 249
Important memory
management warning 250
Object-oriented programming 250
What is OOP exactly? 250
Why do it like this? 252
Class recap 253

Looking at the code for a class 253
Class implementation 253

Declaring, initializing, and
using an object of the class 254

Basic classes app 258
More things we can do with
our first class 261

Frequently asked questions 263
Summary 263

11
More Object-Oriented Programming

Technical requirements 266
Remember that encapsulation
thing? 266
Controlling class use with access
modifiers 267
Controlling variable use with access
modifiers 268
Methods can have access modifiers too 269
Accessing private variables with
getters and setters 271
Setting up our objects with constructors274

Static methods 277

Encapsulation and static
methods mini-app 279
OOP and inheritance 285
Inheritance example app 287
Polymorphism 292
Abstract classes 293
Interfaces 294

Frequently asked questions 297
Summary 297

Telegram Channel @IRFaraExam

vi Table of Contents

12
The Stack, the Heap, and the Garbage Collector

Technical requirements 300
All the Android UI elements
are classes too 300
Re-introducing references 300
So how does this heap thing help me? 302
Using buttons and TextView widgets

from our layout 303
Running the app 313

Inner and anonymous classes 315
Frequently asked questions 315
Summary 316

13
Anonymous Classes – Bringing Android Widgets to Life

Technical requirements 318
Declaring and initializing
the objects 318
Creating UI widgets from
pure Java without XML 319
Exploring the palette – part 1 320
The EditText widget 321
The ImageView widget 321
Radio buttons and groups 322

Anonymous classes 324
Exploring the palette and more
anonymous classes – part 2 328

Switch 328
CheckBox 329
TextClock 330
Using WebView 331

The Widget Exploration app 331
Setting up the Widget Exploration
project and UI 332
Coding the Widget Exploration app 339

Using WebView 348
Running the Widget Exploration
app 349
Summary 352

14
Android Dialog Windows

Technical requirements 354
Dialog windows 354
Creating the Dialog Demo project 354
Coding a DialogFragment class 354
Using the DialogFragment class 358

The Note to Self app 361

Using naming conventions and string
resources 361
How to get the code files for the Note
to Self app 362
The completed app 363
Building the project 366
Preparing the string resources 366

Telegram Channel @IRFaraExam

Table of Contents vii

Coding the Note class 368
Implementing the dialog designs 370
Coding the dialog boxes 375

Showing our new dialogs 383

Summary 389

15
Arrays, Maps, and Random Numbers

Technical requirements 392
A random diversion 392
Handling large amounts of data
with arrays 393
Arrays are objects 395

Simple array example mini-app 396
Getting dynamic with arrays 398
Dynamic array example 398

Entering the nth dimension
with arrays 400

Multidimensional array mini-app 400
Array-out-of-bounds exceptions 404

ArrayList 405
The enhanced for loop 407

Arrays and ArrayList instances
are polymorphic 407
More Java collections – meet
the Java HashMap 409
The Note to Self app 411
Frequently asked questions 411
Summary 411

16
Adapters and Recyclers

Technical requirements 414
RecyclerView and
RecyclerAdapter 414
The problem with displaying lots of
widgets 414
The solution to the problem of
displaying
lots of widgets 415
How to use RecyclerView and
RecyclerAdapter 415
What we will do to set up RecyclerView
with RecyclerAdapter and an ArrayList
of notes 417

Adding RecyclerView,
RecyclerAdapter, and ArrayList
to the Note to Self project 418
Removing the temporary "Show Note"
button and adding RecyclerView 418
Creating a list item for RecyclerView 419
Coding the RecyclerAdapter class 421
Coding MainActivity to use the
RecyclerView and RecyclerAdapter
classes 429

Running the app 433
Frequently asked questions 435
Summary 435

Telegram Channel @IRFaraExam

viii Table of Contents

17
Data Persistence and Sharing

Technical requirements 438
Android intents 438
Switching Activity 438
Passing data between activities 439

Adding a settings page
to Note to Self 440
Creating SettingsActivity 441
Designing the settings screen layout 442
Enabling the user to switch to the
settings screen 442

Persisting data with
SharedPreferences 444

Reloading data with
SharedPreferences 446
Making the Note
to Self settings persist 446
Coding the SettingsActivity class 446
Coding the MainActivity class 449

More advanced persistence 451
What is JSON? 452
Java exceptions – try, catch, and finally 453

Backing up user data
in Note to Self 454
Frequently asked questions 462
Summary 462

18
Localization

Technical requirements 463
Making the Note to Self app
accessible for Spanish and
German speakers 464
Adding Spanish language support 464
Adding German language support 464
Adding the string resources 465

Running Note to Self in German
or Spanish 468
Making the translations work in Java
code 469

Summary 471

19
Animations and Interpolations

Technical requirements 473
Animations in Android 474
Designing cool animations in XML 474
Instantiating animations and
controlling them with Java code 477

More animation features 477

Animation demo app –
introducing SeekBar 479
Laying out the animation demo 479

Telegram Channel @IRFaraExam

Table of Contents ix

Coding the XML animations 483
Wiring up the animation demo app
with Java 488

Frequently asked questions 499
Summary 500

20
Drawing Graphics

Technical requirements 502
Understanding the Canvas class 502
Getting started drawing with Bitmap,
Canvas, and ImageView 502

Using the Canvas class 504
Preparing the instances of the
required classes 505
Initializing the objects 505
Setting the Activity content 506

Canvas demo app 506
Creating a new project 506

The Android coordinate system 512
Plotting and drawing 512

Creating bitmaps 513
Manipulating bitmaps 514
What is a bitmap exactly? 514
The Matrix class 515

Bitmap manipulation demo app 518
Adding the graphic to the project 518

Frequently asked question 523
Summary 523

21
Threads and Starting the Live Drawing App

Technical requirements 526
Creating the Live Drawing
project 526
Refactoring MainActivity to
LiveDrawingActivity 526
Locking the game to fullscreen and
landscape orientation 527
Looking ahead at the Live Drawing app 528
Coding the LiveDrawingActivity class 529
Coding the LiveDrawingView class 532
Coding the LiveDrawingView class 534

The game loop 543
Threads 546
Problems with threads 547

Implementing the game loop
with a thread 550
Implementing Runnable and providing
the run method 550
Coding the thread 551
Starting and stopping the thread 552
Using the Activity lifecycle to start and
stop the thread 553
Coding the run method 554

Running the app 558
Summary 559

Telegram Channel @IRFaraExam

x Table of Contents

22
Particle Systems and Handling Screen Touches

Technical requirements 562
Adding custom buttons
to the screen 562
Implementing
a particle system effect 563
Coding the Particle class 564
Coding the ParticleSystem class 566
Spawning particle systems in the

LiveDrawingView class 572

Handling touches 574
Coding the onTouchEvent method 576
Finishing the HUD 578

Running the app 579
The Android Studio Profiler tool 581
Summary 583

23
Supporting Different Versions of Android, Sound Effects,
and Spinner Widget

Handling different versions of
Android 586
Detecting the current Android version 586

The SoundPool class 587
Initializing SoundPool the new way 587
Initializing SoundPool the old way 589

Sound demo app introducing
the Spinner widget 592
Making sound effects 592
Laying out the sound demo 595
Coding the sound demo 598

Summary 604

24
Design Patterns, Multiple Layouts, and Fragments

Technical requirements 606
Introducing the model-view-
controller pattern 606
Android design guidelines 607
Real-world apps 608
Device detection mini-app 611
Coding the MainActivity class 615
Running the app 617

Configuration qualifiers 619
The limitation of configuration
qualifiers 621

Fragments 622
Fragments have a lifecycle too 622
Managing Fragments with
FragmentManager 623

Telegram Channel @IRFaraExam

Table of Contents xi

Our first Fragment app 624
Fragment reality check 631

Frequently asked question 632
Summary 632

25
Building a Simple Image Gallery App

Technical requirements 633
Angry Birds classic swipe menu 634
Building an image gallery/slider
app 634
Implementing the layout 635

Coding the PagerAdapter class 636
Coding the MainActivity class 640
Running the gallery app 642

Summary 643

26
Advanced UI with Navigation Drawer and Fragment

Technical requirements 646
Introducing NavigationView 646
Examining the Simple Database
app 647
Insert 649
Delete 649
Search 650
Results 650

Starting the Simple
Database project 651
Exploring the autogenerated
code and assets 652
Coding the Fragment classes
and their layouts 653

Creating the empty files for the classes
and layouts 654
Coding the classes 654
Designing the layouts 657
Designing content_insert.xml 657
Designing content_delete.xml 658
Designing content_search.xml 659
Designing content_results.xml 660

Using the Fragment classes
and their layouts 660
Editing the Navigation Drawer menu 660
Adding a holder to the main layout 661
Coding the MainActivity.java class 662

Summary 667

27
Android Databases

Technical requirements 670
Databases 101 670
What is a database? 670

What is SQL? 671
What is SQLite? 671

SQL syntax primer 671

Telegram Channel @IRFaraExam

xii Table of Contents

SQLite example code 671

Android SQLite API 674
SQLiteOpenHelper and SQLiteDatabase 674
Building and executing queries 674
Database cursors 677

Coding the database class 678
Coding the Fragment classes to
use the DataManager class 684
Running the Age Database app 688
Summary 690

28
A Quick Chat before You Go

Publishing 692
Make an app! 692
Keep learning 693
Keep reading 693
GitHub 694
Stack Overflow 694

Android user forums 696
Higher-level study 696

My other channels 696
Goodbye and thank you 697
Why subscribe? 699

Other Books You May Enjoy
Index

Telegram Channel @IRFaraExam

Preface
Are you trying to start a career in programming, but haven't found the right way in? Do
you have a great idea for an app, but don't know how to make it a reality? If so, then this
book is for you!

This updated third edition of Android Programming for Beginners will be your companion
for creating Android applications from scratch. We will introduce you to all the
fundamental concepts of programming in an Android context, from the basics of Java
to working with the Android API. All examples use the up-to-date API classes and are
created from within Android Studio, the official Android development environment that
helps supercharge your application development process.

Following this crash course, we'll dive deeper into Android programming and you'll learn
how to create applications with a professional-standard UI through fragments and store
your user's data with SQLite. In addition, you'll see how to make your apps multilingual,
draw to the screen with a finger, and work with graphics, sound, and animations, too.

By the end of this book, you'll be ready to start building your own custom applications in
Android and Java.

Who this book is for
This book is for you if you are completely new to Java, Android, or programming, and
want to make Android applications. This book will also act as a refresher for those of you
who already have experience of using Java on Android to enable you to advance your
knowledge and make rapid progress through the early projects.

Telegram Channel @IRFaraExam

xiv Preface

What this book covers
Chapter 1, Beginning Android and Java, will see you not waste any time in getting started
with developing Android apps. We will look at what is so great about Android, what
exactly Android and Java are, how they work and complement each other, and what that
means to us as future developers. Moving quickly on, we will set up the required software
so that we can build and deploy a simple first app.

Chapter 2, First Contact: Java, XML, and the UI Designer, explains how, at this stage, we
have a working Android development environment and we have built and deployed our
first app. We need to explore this autogenerated code so that we can begin to understand
Android and then learn how to build on this useful template

Chapter 3, Exploring Android Studio and the Project Structure, explains how to create and
run two more Android projects. The purpose of these exercises is to explore in more depth
Android Studio and the structure of Android projects. Along with understanding the
composition of our projects, it will also be beneficial to make sure we get the most from
the emulator.

Chapter 4, Getting Started with Layouts and Material Design, covers the building of three
more layouts—still quite simple, yet a step up from what we have done so far. Before we
get hands-on, we will have a quick introduction to the concept of Material Design. We
will also cover the different types of layout called LinearLayout, ConstraintLayout, and
TableLayout. We will also write some Java code to switch between our different layouts
within a single app/project. This is the first major app that links together multiple topics
in one neat parcel.

Chapter 5, Beautiful Layouts with CardView and ScrollView, is the final chapter on layouts
before we spend some time focusing on Java and object-oriented programming. We will
formalize our learning on some of the different attributes we have already encountered,
and we will also introduce two more cool layouts: ScrollView and CardView. To conclude
this chapter, we will run a CardView project on a tablet emulator.

Chapter 6, The Android Lifecycle, will see us become familiar with the lifecycle of an
Android app. The lifecycle is the way that all Android apps interact with the Android
OS. We will see the phases of the lifecycle that an app goes through, from creation to
destruction, and how this helps us know where to put our Java code, depending on what
we are trying to achieve.

Chapter 7, Java Variables, Operators, and Expressions, covers the core fundamentals of
Java: the code that goes into the classes and the methods that we create, along with the
data that the code acts upon. In this chapter, we will focus on the data. We will dive into
learning how to write our very own Java code. By the end of the chapter, you will be
comfortable writing Java code that creates and uses data within Android.

Telegram Channel @IRFaraExam

Preface xv

Chapter 8, Java Decisions and Loops, explains how we can take a course of action
dependent upon the value of a variable. We will look at making decisions in Java with if,
else, and switch. We will also look at loops in Java with while, do – while, for,
and break.

Chapter 9, Learning Java Methods, takes a closer look at methods, because although we
know that you can call them to make them execute their code, there is more to them than
we have discussed hitherto.

Chapter 10, Object-Oriented Programming, explains how in Java, classes are fundamental
to just about everything. We will begin to understand why the software engineers at Sun
Microsystems back in the early 1990s made Java the way they did. We have already talked
about reusing other people's code, specifically the Android API, but in this chapter, we
will really get to grips with how this works and learn about object-oriented programming
and how to use it.

Chapter 11, More Object-Oriented Programming, is the second part of our whirlwind tour
(theoretical and practical) into OOP. We have already briefly discussed the concepts of
encapsulation, inheritance, and polymorphism, but in this chapter, we will get to see them
in action in some demo apps. While the working examples will show these concepts in
their simplest forms, it will still be a significant stepping stone toward taking control of
our XML layouts via our Java code.

Chapter 12, The Stack, the Heap, and the Garbage Collector, reveals the missing link
between Java and our XML layouts, leaving us with the power to add all kinds of
widgets to our apps, as we have done before, but this time we will be able to control
them through our Java code. In this chapter, we will get to take control of some fairly
simple UI elements, such as Button and TextView. To enable us to understand what is
happening, we need to find out a bit more about the memory in an Android device and
two areas of it—the Stack and the Heap.

Chapter 13, Anonymous Classes – Bringing Android Widgets to Life, explains how, now that
we have a good overview of both the layout and coding of an Android app, as well as our
newly acquired insight into object-oriented programming and how we can manipulate
the UI from our Java code, we are ready to experiment with more widgets from the palette
alongside anonymous classes. In this chapter, we will diversify a lot by going back to the
Android Studio palette and looking around at half a dozen widgets that we have either
not seen at all or have not used fully yet. Once we have done so, we will put them all into
a layout and practice manipulating them with Java code.

Telegram Channel @IRFaraExam

xvi Preface

Chapter 14, Android Dialog Windows, covers how to present the user with a pop-up dialog
window. We can then put all that we know into the first phase of our first major app, Note
to self. We will also then learn about new Android and Java features in this chapter and
the four following (up to chapter 18), and then use our newly acquired knowledge to
enhance the Note to self app each time. In each chapter, we will also build a selection of
smaller apps that are separate from this main app.

Chapter 15, Arrays, Maps, and Random Numbers, talks about Java arrays, which allow
us to manipulate a potentially huge amount of data in an organized and efficient manner.
We will also use a close Java relation to arrays, the ArrayList, and see the differences
between them. Once we are comfortable handling substantial amounts of data, we will see
what the Android API has in order to help us easily connect our new-found data handling
skills to the UI without breaking sweat.

Chapter 16, Adapters and Recyclers, first covers the theory of adapters and lists. We will
learn how to extend RecyclerAdapter in Java code and add a RecyclerView, which acts
as a list to our UI, and then, through the apparent magic of the Android API, bind them
together so that RecyclerView displays the contents of RecyclerAdapter and allows the
user to scroll through the contents.

Chapter 17, Data Persistence and Sharing, examines a couple of different ways to save data
to the Android device's permanent storage. Also, for the first time, we will add a second
activity to our app. It often makes sense when implementing a separate "screen", such as
a settings screen in our app, to do so in a new activity. We will see how to add an activity
and navigate the user between them.

Chapter 18, Localization, explains how to add additional languages. We will see how
adding text the correct way via String resources benefits us when it comes to adding
multiple languages.

Chapter 19, Animations and Interpolations, covers how we can use the Animation
class to make our UI a little less static and a bit more interesting. As we have come to
expect, the Android API will allow us to do some quite advanced things with relatively
straightforward code, and the Animation class is no different.

Chapter 20, Drawing Graphics, is devoted to the Android Canvas class and a number
of related classes, such as Paint, Color, and Bitmap. These classes combined bring great
power when it comes to drawing to the screen. If we want to make a drawing app, draw
graphs, or perhaps a game, we need to take control of every pixel that the Android device
has to offer.

Telegram Channel @IRFaraExam

Preface xvii

Chapter 21, Threads and Starting the Live Drawing App, gets started on the next app. This
app will be a kid's style drawing app where the user can draw on the screen with their
finger. This drawing app will be slightly different, however. The lines that the user draws
will comprise particle systems that explode into thousands of pieces. We will call the
project Live Drawing.

Chapter 22, Particle Systems and Handling Screen Touches, explains how to create the
entities that will exist and evolve in this real-time system as if they have a mind of their
own and form the appearance of the drawings that the user can achieve. We will also
see how the user draws these entities by learning how to respond to interaction with the
screen. This is different to interacting with a widget in a UI layout.

Chapter 23, Supporting Different Versions of Android, Sound Effects, and Spinner Widget,
explains how we can detect and handle different versions of Android. We will then be
able to study the SoundPool class and the different ways we use it, depending on the
Android version the app is running on. At this point, we can then put everything we have
learned into producing a cool sound demo app that will also introduce us to a new UI
widget – the Spinner.

Chapter 24, Design Patterns, Multiple Layouts, and Fragments, is more about your future
apps than anything in the book so far. We will look at a few aspects of Java and Android
that you can use as a framework or template for making ever more exciting and complex
apps at the same time as keeping the code manageable. Furthermore, I will suggest
areas of further study that there is simply not enough room to even scratch the surface of
in this book.

Chapter 25, Building a Simple Image Gallery App, explains how to create an app using
paging and swiping with images as you might find in a photo gallery app. Also, using the
RecyclerView widget, we will selectively load just the data required for the current page
and perhaps the data for the previous and next pages.

Chapter 26, Advanced UI with Navigation Drawer and Fragment, covers what is (arguably)
the most advanced UI. NavigationView can be created simply by choosing it as a template
when you create a new project. We will then examine the autogenerated code and learn
how to interact with it. Then, we will use all we know about Fragment to populate each of
the "drawers" with different behaviors and views.

Chapter 27, Android Databases, explains how, if we are going to make apps that offer our
users significant features, then almost certainly we are going to need a way to manage,
store, and filter significant amounts of data. JSON and SharedPreferences classes have
their place but, at some point, we need to move on to using real databases for real-world
solutions. Android uses the SQLite database management system and, as you would
expect, there is an API to make it as easy as possible.

Telegram Channel @IRFaraExam

Chapter 28, A Quick Chat Before You Go, brings our journey to an end. This chapter is
simply includes a few ideas and pointers that you might like to look at before rushing off
and making your own apps.

To get the most out of this book
To succeed with this book, you don't need any experience whatsoever. If you are confident
with your operating system of choice (Windows, macOS, or Linux), you can learn to
make Android apps while learning the Java programming language. Learning to develop
professional quality apps is a journey that anybody can embark upon and stay on for as
long as they want.

If you do have previous programming (Java or any other language), Android, or other
development experience, then you will make faster progress with the earlier chapters.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Android-Programming-for-Beginners-
Third-Edition. In case there's an update to the code, it will be updated on the existing
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800563438_ColorImages.pdf.

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800563438_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800563438_ColorImages.pdf

Preface xix

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Th last member variable is a LayoutInflater instance, which will
be used to inflate each of the instances of pager_item.xml."

A block of code is set as follows:

@Override

public int getCount() {

 return images.length;

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

import androidx.appcompat.app.AppCompatActivity;

import androidx.viewpager.widget.PagerAdapter;

import androidx.viewpager.widget.ViewPager;

Any command-line input or output is written as follows:

$ mkdir css

$ cd css

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Tips or important notes
Appear like this.

Telegram Channel @IRFaraExam

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

Telegram Channel @IRFaraExam

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com

1
Beginning Android

and Java
Welcome to Android Programming for Beginners Third Edition. In this first chapter, we
won't waste any time getting started with developing Android apps. We will look at
what is so great about Android, what exactly Android and Java are, how they work and
complement each other, and what that means to us as future developers. Moving quickly
on, we will set up the required software so we can build and deploy a simple first app.

Note
It is my aim to keep this book up to date. Please check the following web
page for any discussion and tips on any changes to Android Studio since
the book was first printed: http://gamecodeschool.com/
books/android-programming-for-beginners-3rd-
edition#android-studio-updates.

By the end of this chapter, we will have done the following:

• Discovered what is new in this third edition

• Learned how Java and Android work together

• Set up our development environment – Android Studio – which takes care of all the
components involved in building the Android apps that we will learn about next

Telegram Channel @IRFaraExam

http://gamecodeschool.com/books/android-programming-for-beginners-3rd-edition#android-studio-updates
http://gamecodeschool.com/books/android-programming-for-beginners-3rd-edition#android-studio-updates
http://gamecodeschool.com/books/android-programming-for-beginners-3rd-edition#android-studio-updates

2 Beginning Android and Java

• Learned about the Java Development Kit (JDK) and the Android Application
Programming Interface (API) and how we use them through Android Studio

• Built our very first Android app

• Deployed the app on an Android emulator

• Run our app on an Android emulator and a real device

That's a lot to get through, so let's get started.

Technical requirements
The following are the official technical requirements for Android development with
Android Studio and its related tools. However, these are the absolute bare minimum.
Please see the Setting up Android Studio section for further details.

The requirements for Windows are as follows:

• Microsoft® Windows® 7/8/10 (64-bit)

• 4 GB RAM as a minimum; 8 GB RAM recommended

• 2 GB of available disk space as a minimum; 4 GB recommended (500 MB for the
Integrated Development Environment (IDE) + 1.5 GB for the Android Software
Development Kit (SDK) and emulator system image)

• 1,280 x 800 minimum screen resolution

The requirements for Mac are as follows:

• Mac® OS X® 10.10 (Yosemite) or higher, up to 10.14 (macOS Mojave)

• 4 GB RAM as a minimum; 8 GB RAM recommended

• 2 GB of available disk space as a minimum; 4 GB recommended (500 MB for the
IDE + 1.5 GB for the Android SDK and emulator system image)

• 1,280 x 800 minimum screen resolution

The requirements for Linux are as follows:

• GNOME or KDE desktop

• Tested on gLinux based on Debian

• 64-bit distribution capable of running 32-bit applications

• GNU C Library (glibc) 2.19 or later

Telegram Channel @IRFaraExam

What's new in the third edition? 3

• 4 GB RAM as a minimum; 8 GB RAM recommended

• 2 GB of available disk space as a minimum; 4 GB recommended (500 MB for the
IDE + 1.5 GB for the Android SDK and emulator system image)

• 1,280 x 800 minimum screen resolution

You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2001.

What's new in the third edition?
The second edition saw huge amounts of additional topics compared to the first edition.
Unfortunately, there are only so many pages that can fit in a paperback book. Therefore,
this edition focuses on improving the way that the Java, Android, and app development
concepts are taught. We have rethought the way that topics are explained and made it
more visual than before. In addition, I have managed to squeeze in about a dozen new
mini topics. These are either Java fundamentals such as variable types not covered in
earlier editions, new Android Studio features such as the profiler, or classic programming
concepts such as method recursion and the live debugging of our code. Hopefully, this
third edition will therefore make your Android and Java journeys smoother and more
complete.

Why Java and Android?
When Android first arrived in 2008, it was a bit drab compared to the much more stylish
iOS on the Apple iPhone/iPad. But quite quickly, through diverse handset offerings that
struck a chord with both the practical price-conscious as well as the fashion-conscious
and tech-savvy, the Android user numbers exploded.

For many, myself included, developing for Android is the most rewarding pastime and
business bar none.

Quickly putting together a prototype of an idea, refining it, and then deciding to run
with it and wire it up into a fully fledged app is such an exciting and rewarding process.
Any programming can be fun, and I have been programming all my life, but creating for
Android is somehow extraordinarily rewarding.

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2001
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2001
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2001

4 Beginning Android and Java

Defining exactly why this is the case is quite difficult. Perhaps it is the fact that the
platform is free and open source. You can distribute your apps without needing the
permission of a big, controlling corporation – nobody can stop you. At the same time, you
have well-established, corporate-controlled mass markets such as Amazon Appstore and
Google Play.

More likely, the reason why developing for Android gives such a good feeling is the nature
of the devices themselves. They are deeply personal. You can develop apps that interact
with people's lives – educate, entertain, tell a story, and so on – and it is there in their
pockets ready to go, in the home, in the workplace, or on holiday.

You can certainly build something bigger for the desktop. But knowing that thousands
(or millions) of people are carrying your work in their pockets and sharing it with friends
gives more than just a buzz.

In fact, developing for Android is considered highly skillful and the most successful
developers are hugely admired, even revered.

If all this fluffy and spiritual stuff doesn't mean anything to you, then that's fine too;
developing for Android can make you a living or even make you wealthy. With the
continued growth of device ownership, the ongoing increase in CPU and GPU power, and
the non-stop evolution of the Android operating system itself, the need for professional
app developers is only going to grow.

In short, the best Android developers – and, more importantly, the Android developers
with the best ideas and most determination – are in greater demand than ever. Nobody
knows who these future Android app developers are and they might not even have written
their first line of Java yet.

So, why isn't everybody an Android developer? Obviously, not everybody will share my
enthusiasm for the thrill of creating software that can help people make their lives better,
but I am guessing that because you are reading this, you might!

The beginner's first stumbling block
Unfortunately, for those that do share my enthusiasm, there is a kind of glass wall on the
path of progress that frustrates many aspiring Android developers.

Android uses Java to make apps. Every Android book, even those aimed at so-called
beginners, assumes readers have at least an intermediate level of Java knowledge, and
most need an advanced level. So, good-to-excellent Java knowledge was a prerequisite for
learning Android.

Telegram Channel @IRFaraExam

How Java and Android work together 5

Unfortunately, learning Java in a completely different context to Android can sometimes
be a little dull and much of what you learn is not directly transferable to the world of
Android anyway. You can see why beginners to Android and Java are often put off
from starting.

But it doesn't need to be like this. In this book, I have carefully placed all the Java topics
you would learn in a thick and weighty Java-only beginner's tome and reworked them into
four multi-chapter apps and more than a dozen quick mini-apps, starting from a simple
memo app and then progressing to a cool drawing app, a database app, and a playable
game (available online).

If you want to become a professional Android developer or just want to have more fun
when learning Java and Android, this book will help.

How Java and Android work together
Before we start our Android quest, we need to understand how Android and Java work
together. Android is a complex system, but you do not need to understand it in depth to
be able to make amazing apps.

After we write a program in Java for Android, we click a button and our code is
transformed into another form, the form that is understood by Android. This other form
is called bytecode and the transformation process is called compiling.

Then, when the user installs our application, the bytecode is translated by another process
known as the Android Runtime (ART) into machine code. This is the fastest possible
execution format. So, if you have ever heard people saying that you shouldn't use Java
because it is slow, then you know they are mistaken. Java is fast for the programmer
to program and is then, upon installation, changed to machine code that is fast for the
device. What could be better?

Not only does ART enable super-fast execution of our apps, but it also lowers battery use.
Furthermore, the ART system doesn't just create the machine code and then sit back and
relax; it provides hooks into our application that enhance memory management while
the application is running. This makes our app run more efficiently and, as we will see in
Chapter 12, The Stack, the Heap, and the Garbage Collector, easier to write by handling
critical aspects of memory management.

The ART itself is a software system written in another language that runs on a specially
adapted version of the Linux operating system. So, what the user sees of Android is itself
just an app running on yet another operating system.

Telegram Channel @IRFaraExam

6 Beginning Android and Java

Android is a collection of sub-systems. The typical Android user doesn't see the Linux
operating system or know anything of the presence of ART but they are both there
making things tick.

The purpose of the Linux part of the system is to hide the complexity and diversity of the
hardware and software that Android runs on, but at the same time exposing all its useful
features. This exposing of features works in two ways:

• First, the system itself must have access to the hardware, which it does.

• Second, this access must be programmer-friendly and easy to use – and this is
because of the Android API.

Let's continue by talking more about the Android API.

Note
This book is about learning Java and building Android apps from scratch, so
I won't go any deeper than I have into how Android works. If, however, you
want to know more, then the Wikipedia page is a good reference: https://
en.wikipedia.org/wiki/Android_(operating_system).

Understanding the Android API
The Android API is code that makes it easy to do exceptional things. A simple analogy
could be drawn with a machine, perhaps a car. When you press on the accelerator, a whole
bunch of things happen under the hood. We don't need to understand combustion or
fuel pumps because some smart engineer has made an interface for us – in this case, a
mechanical interface: the accelerator pedal.

For example, the following line of Java code probably looks a little intimidating at this
stage in the book, but it serves as a good example of how the Android API helps us:

locationManager.getLastKnownLocation(LocationManager.GPS_
PROVIDER)

Once you learn that this single line of code searches for available satellites in space, and
then communicates with them in their orbits around the Earth, then retrieves your precise
latitude and longitude on the surface of the planet, it becomes easy to begin to glimpse
the power and depth of the Android API in conjunction with the compiled bytecode
and ART.

For sure, that code does look a little challenging – even mind-boggling at this stage of the
book – but imagine trying to talk to a satellite some other way!

Telegram Channel @IRFaraExam

https://en.wikipedia.org/wiki/Android_(operating_system
https://en.wikipedia.org/wiki/Android_(operating_system

How Java and Android work together 7

The Android API has a whole bunch of Java code that has already been written for us to
use as we like.

Note
There are many different estimates of the number of lines of code that have
gone into Android. Some estimates are as low as 1 million, while some are as
high as 20 million. What might seem surprising is that despite this vast amount
of code, Android is known in programming circles for being "lightweight."

The question we must ask and the one this book tries to answer is as follows:

How do we use all this code to do cool stuff? Or to frame the question to fit the earlier
analogy, how do we find and manipulate the pedals, steering wheel, and sunroof of the
Android API?

The answer to this question is the Java programming language and the fact that Java was
designed to help programmers handle complexity. Let's talk a bit about Java and Object-
Oriented Programming (OOP).

Java is object-oriented
Java is a programming language that has been around a lot longer than Android. It is
an object-oriented language. This means it uses the concept of reusable programming
objects. If this sounds like technical jargon, another analogy will help. Java enables us and
others (such as the Android development team) to write Java code that can be structured
based on real-world things, and here is the important part: it can be reused.

So, using the car analogy, we could ask the question: if a manufacturer makes more than
one car in a day, do they redesign every part for each and every car?

The answer, of course, is no. They get highly skilled engineers to develop exactly the right
components, honed, refined, and improved over years. Then, that same component is
reused again and again as well as being occasionally improved.

If you are going to be fussy about my analogy, then you can point out that each of the car's
components still has to be built from the raw materials using real-life engineers or robots
and so on.

This is true. What software engineers do when they write their code is build a blueprint
for an object. We then create an object from their blueprint using Java code and once we
have that object, we can configure it, use it, combine it with other objects, and
more besides.

Telegram Channel @IRFaraExam

8 Beginning Android and Java

Furthermore, as well as this, we can design blueprints ourselves and make objects from
them as well. The compiler then transforms (manufactures) our bespoke creation into
bytecode. Hey, presto! We have an Android app.

In Java, a blueprint is called a class. When a class is transformed into a real working
"thing," we call it an object or an instance of the class.

Objects concisely
We could go on making analogies all day long. All we care about at this point,
however, is the following.

Java is a language that allows us to write code once that can then be used
repeatedly. This is very useful because it saves us time and allows us to use
other people's code to perform tasks we might otherwise not have the time or
knowledge to write ourselves. Most of the time, we do not even need to see this
code or even know how it works! One last analogy: we just need to know how
to use the code just as we need to learn how to drive a car.

So, some smart software engineer up at Android HQ writes a desperately complex Java
program that can talk to satellites. They then consider how they can make this code useful
to all the Android programmers who want to make amazing apps that use the user's
location to do cool things. One of the things they will do is make features such as getting
the device's location in the world a simple one-line task.

So, the one line of code we saw previously sets in action many more lines of code that we
don't see and don't need to see. This is an example of using somebody else's code to make
our code infinitely simpler.

Note
If the fact that you don't have to see all the code is a disappointment to you,
then I understand how you feel. Some of us, when we learn about something,
want to learn every intricate detail. If you are like this, then be reassured that
the best place to start learning how the Android API works internally is to use
it as the API programmers intended. Throughout the book, I will regularly
point out further learning opportunities where you can find out about the
inner workings of the Android API. Also, we will be writing classes that are
themselves reusable, kind of like our own API, except that our classes will focus
on what we want our app to do.

Welcome to the world of object-oriented programming – OOP. I will constantly refer
to OOP in every chapter and there is the big reveal of how it works in Chapter 10, Object-
Oriented Programming.

Telegram Channel @IRFaraExam

How Java and Android work together 9

Run that by me again – what exactly is Android?
To get things done on Android, we write Java code of our own, which also uses the Java
code of the Android API. This is then compiled into bytecode and translated by ART
when installed by the user into machine code, which in turn has connections to an
underlying operating system called Linux, which handles the complex and extremely
diverse range of hardware that are the different Android devices.

The manufacturers of the Android devices and the individual hardware components
obviously know this too and they write advanced software called drivers, which ensure
that their hardware (CPU, GPU, GPS receivers, memory chips, hardware interfaces, and so
on) can run on the underlying Linux operating system.

The bytecode (along with some other resources) is placed in a bundle of files called an
Android Application Package (APK) and this is what ART needs to run to prepare our
app for the user.

Note
It is not necessary to remember the details of the steps that our code goes
through when it interacts with the hardware. It is enough just to understand
that our Java code goes through some automated processes to become the apps
that we will publish to the Google Play Store.

The next question is "where exactly does all this Java coding and compiling into bytecode
along with APK packaging take place?". Let's look at the development environment we
will be using.

Android Studio
A development environment is a term that refers to having everything you need to
develop, set up, and be ready to go in one place. We need two things to get started:

• We talked a fair bit about compiling our Java code, as well as other people's Java
code, into bytecode that in turn will be converted into executable machine code on
the user's Android device. To use Java code, we need some free software called the
JDK. The JDK includes even more of other people's code, which is separate from the
Android API.

• There is an entire range of tools needed to develop for Android, and we also
need the Android API, of course. This whole suite of requirements is collectively
known as the Android SDK. Fortunately, downloading and installing a single
application will give us these things all bundled together. The application is called
Android Studio.

Telegram Channel @IRFaraExam

10 Beginning Android and Java

Android Studio is an IDE that will take care of all the complexities of compiling our code
and linking with the JDK and the Android API. Once we have installed Android Studio,
we can do everything we need inside this single application and put to the back of our
minds many of the complexities we have been discussing.

Tip
Over time, these complexities will become second nature. It is not necessary to
master them to make further progress.

So, we had better get hands-on with Android Studio.

Setting up Android Studio
Setting up Android Studio is quite straightforward if a little lengthy. Grab some
refreshments and get started with the following steps. This tutorial will install Android
Studio to the D drive. I chose the D drive because it is a big install, around 12 GB once
we have everything downloaded, and the D drive on many PCs is typically larger and has
more free space than the C drive. Should you wish to install on the C drive (or any other
drive), then these instructions should be easy to adjust:

1. Visit https://developer.android.com/studio and click the
Download Android Studio button. This will begin the download of the latest
stable version for Windows. You will need to accept the terms and conditions to
commence the download.

2. While you are waiting for the download to complete, create a new folder on the root
of your D drive called Android. Inside the Android folder, create another new
folder called Android Studio. Navigate back to the Android folder and create
another new folder named Projects. This is where we will keep all the project
files we will create throughout the book. Create another new folder called Sdk,
which is where we will ask the installer program to install the Android SDK. You
should now have a D:\Android folder that looks like this:

Figure 1.1 – D:\Android folder

Telegram Channel @IRFaraExam

https://developer.android.com/studio

Setting up Android Studio 11

3. Once the download is complete, find the downloaded file. It will be called
android-studio-ide Double-left-click the file to run it.

4. You will be asked to grant the installer program administrative privileges, then you
can left-click Next to begin the installation. On the Choose Components screen,
make sure that both the Android Studio and Android Virtual Device options are
checked, and then left-click the Next button:

Figure 1.2 – Choose Components screen

5. On the Configuration Settings window, left-click the Browse button and navigate
to D:\Android\Android Studio, and then left-click the OK button:

Figure 1.3 – Configuration Settings window

Telegram Channel @IRFaraExam

12 Beginning Android and Java

6. Left-click the Next button shown in the preceding screenshot. On the Choose Start
Menu Folder window, left-click Install to accept the default option. The first part of
the installation will now proceed.

7. Once you get the Installation Complete message, left-click the Next button. You
can then left-click the Finish button.

Android Studio should start automatically. If it doesn't, you can find and start the
Android Studio app from your Windows start menu.

8. You will be prompted that you have a missing SDK (unless this is not the first time
you have used Android Studio). Left-click Next to continue.

9. On the SDK Components Setup screen shown next, we want to change the install
location. Left-click the Android SDK Location field and browse to D:\Android\
Sdk, as shown in the following screenshot:

Figure 1.4 – SDK Components Setup screen

10. Left-click the Next button.

11. On the Verify Settings window, left-click the Finish button. Android Studio will
now download some more files and complete the installation. It could take a few
minutes or more and you might again be prompted to allow access to your PC.

12. When the process is over, left-click the Finish button.

Telegram Channel @IRFaraExam

What makes an Android app? 13

You will be greeted with the Android Studio welcome screen, shown next:

Figure 1.5 – Android Studio welcome screen

If you are carrying straight on with the next section, then leave this screen up. If you want,
you can close it down and run Android Studio from the Windows start menu, just like any
other app, when you are ready to proceed.

Let's talk about all the different things that an Android app comprises.

What makes an Android app?
We already know that we will write Java code that will itself use other people's Java code
and will be compiled into bytecode that is converted into machine code on our users'
Android devices. In addition to this, we will also be adding and editing other files that are
included in the final APK as well. These files are known as Android resources.

Android resources
Our app will include resources such as images, sound, and User Interface (UI) layouts,
which are kept in separate files from the Java code. We will slowly introduce ourselves to
them over the course of the book.

Telegram Channel @IRFaraExam

14 Beginning Android and Java

It will also include files that have the textual content of our app. It is the convention to
refer to the text in our app through separate files because it makes them easy to change
and easy to create apps that work for different languages and geographical regions.

Furthermore, the actual UI layout of our apps, despite the option to implement them with
a visual designer, is actually read from text-based files by Android.

Android (or any computer), of course, cannot read and recognize text in the same way
that a human can. Therefore, we must present our resources in a highly organized and
predefined manner. To do so, we will use eXtensible Markup Language (XML). XML is a
huge topic but fortunately, its whole purpose is to be both human- and machine-readable.
We do not need to learn this language; we just need to note (and then conform to) a few
rules. Furthermore, most of the time that we interact with XML, we do so through a neat
visual editor provided by Android Studio. We can tell when we are dealing with an XML
resource because the filename will end with the extension .xml.

You do not need to memorize this as we will constantly be returning to this concept
throughout the book.

The structure of Android's Java code
In addition to these resources, it is worth noting that Java as used in Android has a
structure to its code. There are many millions of lines of code that we can take advantage
of. This code will obviously need to be organized in a way that makes it easy to find and
refer to. It is organized into packages that are specific to Android.

Packages
Whenever we create a new Android app, we will choose a unique name known as a
package. We will see how we do this in the Building our first Android app section.
Packages are often separated into sub-packages, so they can be grouped together with
other similar packages. We can simply think of this as folders and sub-folders, which is
almost exactly what it is.

Telegram Channel @IRFaraExam

The structure of Android's Java code 15

We can think of all the packages that the Android API makes available to us as code from
a code library. Some common Android packages we will use include the following:

• android.graphics

• android.database

• android.view.animation

As you can see, they are arranged and named to make what is in them as obvious
as possible.

Note
If you want to get an idea of the sheer depth and breadth of the Android
API, then look at the Android package index: https://developer.
android.com/reference/packages.

Classes
Earlier, we learned that the reusable code blueprints that we can transform into objects are
called classes. Classes are contained in these packages. We will see in our very first app
how we can easily import other people's packages along with specific classes from those
packages for use in our projects. A class will almost always be contained in its own file
with the same name as the class and it will also have the .java file extension.

Methods
In Java (and therefore Android), we further break up our classes into sections that
perform the different actions of our class. We call these action-oriented sections methods.
It is most often the methods of the class that we will use to access the functionality
provided within all those millions of lines of code.

We do not need to read the code. We just need to know which class has what we need,
which package it is in, and which methods from within the class give us precisely the
result we are after.

The next diagram shows a representation of the Android API. The structure of the code
we will be writing will be similar to the way this example is structured, although we will
usually have just one package per app.

Telegram Channel @IRFaraExam

https://developer.android.com/reference/packages
https://developer.android.com/reference/packages

16 Beginning Android and Java

Of course, because of the object-oriented nature of Java, we will only be using selected
parts from this API. Notice also that each class has its own distinct data. Typically, if you
want access to the data in a class, you need to have an object of that class:

Figure 1.6 – A representation of the Android API

You do not need to memorize this as we will constantly be returning to this concept
throughout the book.

By the end of this chapter, we will have imported multiple packages, as well as dozens of
classes from them, and we will have used many of their methods as well. By the end of
Chapter 2, First Contact: Java, XML, and the UI Designer, we will have even written our
very own methods. Now we can get started with the first app.

Building our first Android app
In programming, it is tradition for the first app of a new student to use whatever language/
operating system they are using to say hello to the world. We will quickly build an app that
does just that and in Chapter 2, First Contact: Java, XML, and the UI Designer, we will go
beyond that and add some buttons that respond to the user when they are pressed.

Telegram Channel @IRFaraExam

Building our first Android app 17

Note
The complete code as it stands at the end of this chapter is in the download
bundle in the Chapter 1 folder for your reference. You can't simply copy
and paste this code, however! You still need to go through the project creation
phase explained in this chapter (and at the beginning of all the projects) as
Android Studio does lots of work behind the scenes. Once you become familiar
with these steps and understand which code is typed by you the programmer
and which code/files are generated by Android Studio, you will then be
able to save time and typing by copy and pasting the files I supply in the
download bundle.

Follow these steps to start the project:

1. Run Android Studio in the same way you run any other app. On Windows 10, for
example, the launch icon appears in the start menu.

Tip
If you are prompted with Import Studio settings from…, choose Do not
import settings.

2. You will be greeted with the Android Studio welcome screen, as shown in the
following screenshot. Locate the start a new Android Studio project option and
left-click it:

Figure 1.7 – Android Studio welcome screen

Telegram Channel @IRFaraExam

18 Beginning Android and Java

3. The window that follows is Select a Project Template.

These are some useful project templates that Android Studio can generate for
you depending on the type of app you are going to develop. We will use the Basic
Activity option. Android Studio will auto-generate a small amount of code and a
selection of resources to get our project started. We will discuss the code and the
resources in detail in the next chapter.

4. Select Basic Activity. Here is a picture of the Select a Project Template window
with the Basic Activity option selected:

Figure 1.8 – Select a Project Template window

5. Make sure Basic Activity is selected as it is in the preceding screenshot, and then
click Next.

Telegram Channel @IRFaraExam

Building our first Android app 19

6. After this, Android Studio will bring up the Configure Your Project window. This
is where we will do the following:

a. Name the new project.

b. Choose where on our computer the project files should go.

c. Provide a package name to distinguish our project from any others in case we
should ever decide to publish the app on the Play Store.

d. Select the programming language we will use.

The name of our project is going to be Hello World and the location for the
files will be your Projects folder that we created in the Setting up Android
Studio section.

The package name can be almost anything you like. If you have a website, you could
use the format com.yourdomainname. If not, feel free to use my domain name,
com.gamecodeschool.helloworld, or something that you just make up
yourself. It is only important when you come to publish.

To be clear, in case you can't see the details in the following screenshot clearly,
here are the values I used. Remember that yours might vary depending upon your
choices for package name and project location:

Tip
Note that the application name has a space between Hello and World but
the project location does not and will not work if it does.

Telegram Channel @IRFaraExam

20 Beginning Android and Java

7. The next screenshot shows the Configure Your Project screen once you have
entered all the information:

Figure 1.9 – Configure Your Project screen

8. In the previous screenshot, you can see that Android Studio has auto-generated a
package name based on the information entered. Mine is com.gamecodeschool.
helloworld. Yours might be the same or not; it doesn't matter.

Note
You can write Android apps in a few different languages, including C++ and
Kotlin. There are various advantages and disadvantages to each compared to
using Java. Learning Java will be a great introduction to other languages and
Java is also an official language of Android. Most top apps and games on the
Play Store are currently written in Java.

You can also see the Minimum SDK option. Leave this at the default but note that
the default might be different for you at the time of writing.

Telegram Channel @IRFaraExam

Deploying the app so far 21

Note
We already know that the Android SDK is the collection of packages of code
that we will be using to develop our apps. Like any good SDK, the Android
SDK is regularly updated and each time it gets a significant update, the version
number is increased. Simply put, the higher the version number, the newer the
features you get to use; the lower the version number, the more devices our
app will work on. For now, Android Jelly Bean will give us lots of great features
and near-100% compatibility with the Android devices currently in use. If at
the time of reading Android Studio is suggesting a newer API and Android
version, then go with that.

If you are reading this some years in the future, then the Minimum SDK
option will probably default to something different but the code in this book
will still work.

9. Click the Finish button and we will run the app to see what we have achieved.

Note
The first time you create a new project, Android Studio will initiate another
download. Android Studio will set up the Gradle build system that it uses to
manage project configuration and deployment. This will only happen for the
first project. No knowledge of Gradle is required for the book but if you are
curious, a simple web search will reveal more.

Let's look at our app in action.

Deploying the app so far
Before we explore any of the code and learn our first bit of Java, you might be surprised to
learn that we can already run our project. It will just be a fairly featureless app but as we
will be running the app as often as possible to check our progress, let's see how to do that
now. You have three options:

• Run the app on the emulator on your PC (part of Android Studio) in debug mode.

• Run the app on a real Android device in USB debugging mode.

• Export the app as a full Android project that can be uploaded to the Play Store.

Telegram Channel @IRFaraExam

22 Beginning Android and Java

The first option (debug mode) is the easiest to set up because we did it as part of setting up
Android Studio. If you have a powerful PC, you will hardly notice the difference between
the emulator and a real device. However, screen touches are emulated by mouse clicks
and proper testing of the user's experience is not possible in some of the later apps we
will create, such as the drawing app. Furthermore, you might just prefer to test out your
creations on a real device occasionally – I know I do.

The second option, using a real device, has a couple more steps but once set up is as good
as option 1 and the screen touches are for real.

The final option takes about 5 minutes (at least) to prepare, and then you need to
manually put the created package onto a real device and install it every time you make a
change to the code.

Probably the best way is to use the emulator to quickly test and debug minor increments
in your code, and then fairly regularly use USB debugging mode on a real device to make
sure things are still as expected. Only occasionally will you want to export an actual
deployable package.

For these reasons, we will now go through how to run the app using the emulator and
USB debugging on a real device.

Running and debugging the app on
an Android emulator
Follow these simple steps to run the app on the default Android emulator:

1. From the Android Studio menu bar, select Tools | AVD Manager. AVD stands for
Android Virtual Device (an emulator). You will see the following window:

Figure 1.10 – AVD Manager

Telegram Channel @IRFaraExam

Deploying the app so far 23

Notice there is an emulator on the list. In my case, it is Pixel_3a_API_30_x…. If
you are following this sometime in the future, it may be a different emulator that
was installed by default. It won't matter.

Important Note
The emulator should have been installed by the steps we have performed
previously. I noticed while testing with one pre-release version that it wasn't
installed by default. In the event that there is no emulator listed on the
Your Virtual Devices screen, select Tools | AVD Manager | Create Virtual
Device… | Next| R Download | Accept | Next and a default emulator will be
downloaded and installed. When the installation is done, click Finish followed
by Next and finally Finish again. Now you can refer to the previous step to run
the emulator.

2. Click the green play icon (to the right) shown in the next screenshot and wait as the
emulator boots up:

Figure 1.11 – Play icon

3. Now you can click the play icon on the Android Studio quick launch bar as
shown in the next screenshot, and if prompted, choose Pixel_3a_API_30_x… (or
whatever your emulator is called) and the app will launch on the emulator:

Figure 1.12 – Play icon on the Android Studio quick launch bar

Telegram Channel @IRFaraExam

24 Beginning Android and Java

You're done. Here is what the app looks like so far in the emulator. Remember that you
might (probably do) have a different emulator – that's fine:

Figure 1.13 – What the app looks like so far

Clearly, we have more work to do before we move to Silicon Valley and look for financial
backing, but it is a good start. The message on the screen is Hello first fragment. A
fragment is a building block of many Android apps and we will explore them further
throughout the book. If you click on the Next button, you will see a new empty layout,
and if you then click on the Previous button, you will see the Hello first fragment screen
again. Not bad considering we haven't written any code yet.

Telegram Channel @IRFaraExam

Deploying the app so far 25

We need to test and debug our apps often throughout development to check for any
errors, crashes, or anything else unintended.

Note
We will see how we get errors and other feedback for debugging from our apps
in the next chapter.

It is also important to make sure it looks good and runs correctly on every device type/
size that you want to target. Obviously, we do not own one of each of the many thousands
of Android devices. This is where emulators come in.

Emulators, however, are sometimes a bit slow and cumbersome, although they have
improved a lot recently. If you want to get a genuine feel for the experience your users will
get, then you can't beat deploying to a real device. So, we will want to use both real devices
and emulators while developing our apps.

Tip
If you are planning on using the emulator again soon, then leave it running to
avoid having to wait for it to start again.

If you want to try out your app on a tablet, you're going to need a different emulator.

Creating a new emulator
If you want to create an emulator for a different Android device, this is simple.
From the main menu, select Tools | AVD Manager. In the AVD Manager
window, left-click Create Virtual Device. Now, left-click on the type of device
you want to create, TV, Phone, Wear OS, or Tablet. Now, simply left-click
Next and follow the instructions to create your new AVD. Next time you run
your app, the new AVD will appear as an option to run the app on. We will
create a new tablet emulator step by step in the next chapter.

Now we can look at how to get our app onto a real device.

Running the app on a real device
The first thing to do is to visit your device manufacturer's website and obtain and install
any drivers that are needed for your device and operating system.

Telegram Channel @IRFaraExam

26 Beginning Android and Java

Note
Most newer devices won't need a driver. So, you may want to just try the
following steps first.

The next few steps will set up the Android device for debugging. Note that different
manufacturers structure the menu options slightly differently from others. But the
following sequence is probably very close, if not exactly the same, for enabling debugging
on most devices:

1. Tap the Settings menu option or the Settings app on your phone/tablet.

2. This next step will vary slightly for different versions of Android. The Developer
options menu is hidden away so as not to trouble regular users. You must perform a
slightly odd task to unlock the menu option. Tap the About device or About Phone
option. Find the Build Number option and repeatedly tap it until you get a message
informing you that You are now a developer!.

Note
Some manufacturers have different and obscure methods for achieving this
step. If this step doesn't work, do a web search for your device and "unlocking
developer options."

3. Go back to the Settings menu.

4. Tap Developer options.

5. Tap the checkbox for USB Debugging.

6. Connect your Android device to the USB port of your computer.

7. Click anywhere on Android Studio to get Android Studio to detect that your device
has been connected. You should now find an Allow USB debugging? prompt on
your device; hit Allow.

8. Click the play icon from the Android Studio toolbar, as shown in the
next screenshot:

Figure 1.14 – Play icon from the Android Studio toolbar

9. When prompted, click OK to run the app on your chosen device.

Telegram Channel @IRFaraExam

Frequently asked questions 27

We are now ready to learn some Java and add our own Java code to the Hello World
project, which we will cover in the next chapter.

Frequently asked questions
1. So, is Android not really an operating system, just a virtual machine, and are all the

phones and tablets really Linux machines?

No, all the different sub-systems of an Android device, which include Linux,
the ART, and the libraries and drivers, are together what make up the Android
operating system.

2. I still don't understand all these technical terms, such as ART, object-oriented, APK,
and so on. Should I re-read this chapter?

No, that isn't necessary as we just needed to introduce this jargon and we will be
revisiting it all as well as clarifying it as the book progresses. If you understand
the following, you are ready to proceed to Chapter 2, First Contact: Java, XML, and
the UI Designer:

We will be writing Java code and creating other resources in Android Point
Studio, which, with the help of the JDK, will turn this code and resources into real
Android apps.

Summary
So far, we have set up our Android development environment, created a new Android
app, and deployed our app to both an emulator and a real device. If you still have
unanswered questions (and you probably have more than you did at the start of the
chapter), don't worry because as we dig deeper into the world of Android and Java,
things will become clearer.

As the chapters progress, you will build a very rounded understanding of how everything
fits together, and then success will just be a matter of practice and digging even deeper
into the Android API.

In the next chapter, we will edit the UI using the visual designer and raw XML code, as
well as writing our first Java methods and getting to use some of the methods provided for
us by the Android API.

Telegram Channel @IRFaraExam

Telegram Channel @IRFaraExam

2
First Contact:

Java, XML, and the
UI Designer

At this stage, we have a working Android development environment and we have built
and deployed our first app. It is obvious, however, that the auto-generated code from
Android Studio is not going to make the next top-selling app on Google Play. We need to
explore this auto-generated code so we can begin to understand Android and then learn
how to build upon this useful template. With this aim in mind, in this chapter, we will do
the following:

• See how to get technical feedback from our apps

• Examine the Java code and UI XML code from our first app

• Get our first taste of using the Android Studio User Interface (UI) designer

• Learn some core Java fundamentals and how they relate to Android

• Write our first Java code

First, let's see how to get feedback from our apps.

Telegram Channel @IRFaraExam

30 First Contact: Java, XML, and the UI Designer

Technical requirements
You can find the code for this chapter on GitHub at https://github.com/
PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2002.

Examining the logcat output
In the previous chapter, we mentioned that our app was running in debug mode on the
emulator or real device, so we can monitor it and get feedback when things go wrong. So,
where is all this feedback then?

You might have noticed a whole load of scrolling text at the bottom of the Android Studio
window. If not, click on the Logcat tab, as shown by the highlighted area labeled 1 in the
next figure:

Note
The emulator must be running, or a real device must be attached in debugging
mode, for you to see the following window. Furthermore, if you restarted
Android Studio for some reason and have not executed the app since restarting,
then the Logcat window will be empty. Refer to the first chapter to get the app
running on an emulator or a real device.

Figure 2.1 – The Logcat tab

You can drag the window to make it taller, just like you can in most other Windows
applications if you want to see more.

This window is called logcat or is sometimes referred to as the console. It is our app's
way of telling us what is going on underneath what the user sees. If the app crashes or has
errors, the reason or clues to the reason will appear here. If we need to output debugging
information, we can do so here as well.

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2002
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2002
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2002

Exploring the project Java and the main layout XML 31

Note
The app we are building should not have any problems at this stage, but in
the future, if you just cannot work out why your app is crashing, copying and
pasting a bit of text from logcat into Google will often reveal the reason.

Filtering the logcat output
You might have noticed that most if not all of the contents of logcat is almost
unintelligible. That's OK. For now, we are only interested in errors, which will be
highlighted in red, and the debugging information, about which we will learn next. So that
we see less of the unneeded text in our logcat window, we can turn on some filters to make
things clearer.

In the previous figure, I highlighted two more areas, as 2 and 3. Area 2 is a drop-down list
that controls the first filter. Left-click it now and change it from Verbose to Info. We have
cut down the text output significantly. We will see how this is useful when we have made
some changes to our app and redeployed it. We will do this after we have explored the
code and the assets that make up our project. Also, double-check in the area that is labeled
3 that says Show only the selected application. If it doesn't, left-click on it and change it
to Show only the selected application now.

Now we can look at what Android Studio automatically generated for us and then we can
set about changing and adding to the code to personalize it beyond what we got from the
project creation phase.

Exploring the project Java and the
main layout XML
We are going to look at the resource files that have the code that defines our simple UI
layout and the file that has our Java code. At this stage, we will not try to understand it
all, as we need to learn some more basics before it makes sense to do so. What we will
see, however, is the basic contents and structure of both files, so we can reconcile their
contents with what we already know about Android resources and Java.

Telegram Channel @IRFaraExam

32 First Contact: Java, XML, and the UI Designer

Examining the MainActivity.java file
Let's look at the Java code first. If, for some reason, this isn't currently visible, you can see
this code by left-clicking on the MainActivity.java tab, as shown in the next figure:

Figure 2.2 – MainActivity.java tab

As we are not looking at the intricate details of the code, an annotated screenshot is more
useful than reproducing the actual code in text form. Regularly refer to the next figure
while reading on in this section:

Figure 2.3 – Java code

The first thing to note is that I have added a few empty lines among the code to space
things out a little bit and present a clearer image.

Telegram Channel @IRFaraExam

Exploring the project Java and the main layout XML 33

Code folding (hiding) in Android Studio
Now look at the left-hand side of the figure where multiple parts are labeled 9. This points
to all the little + and - buttons in the editor, which can collapse and expand parts of the
code. I have indeed collapsed some parts of the code, and other parts I have left visible. So,
what you can see on your screen is slightly different to what you will see if you look at the
figure. In Android Studio, play with the + and – buttons for a while to practice hiding and
unhiding sections of the code. You might want to get your screen to look like the figure,
but this is not a requirement to continue. The technical term for hiding code like this is
folding.

The package declaration
Part 1 is called the package declaration and, as you can see, it is the package name we
chose when we created the project preceded by the word package. Every Java file will
have a package declaration at the top.

Importing classes
Part 2 is eight lines of code that all begin with the word import. After the word import,
we can see there are various dot-separated words. The last word of each line is the name
of the class that line imports into our project and all the earlier words in each line are the
packages and sub-packages that contain these classes.

For example, this next line imports the AppCompatActivity class from the
androidx.appcompat.app package and sub-packages:

import androidx.appcompat.app.AppCompatActivity;

Note
The semicolon at the end of the lines shows the compiler that it is the end of
that line of code.

This means that in this file we will have access to these classes. In fact, it is these classes
that the auto-generated code uses to make the simple app that we saw in action in the
previous chapter.

We will not discuss all these classes in this chapter. It is just the concept that we can do
this importing that is significant right now. Note that we can add extra classes from any
package at any time and we will when we improve upon our app shortly.

Telegram Channel @IRFaraExam

34 First Contact: Java, XML, and the UI Designer

The class
Part 3 of our code is called the class declaration. Here is that line in full; I have
highlighted one part of it:

public class MainActivity extends AppCompatActivity {

The class declaration is the start of a class. Notice the highlighted part, MainActivity.
This is the name Android Studio gave the class when we created the project and it is also
the same as the MainActivity.java filename as we would expect having discussed
Java classes previously.

The class and the file can be renamed, but since this is the key/main activity of our app,
MainActivity seems appropriate. The extends keyword means that our class called
MainActivity will be of the type AppCompatActivity.

We can, and will, use some classes without this extends part. We use extends here
because we want to use all the code that went into the AppCompatActivity class, as
well as adding our own code to it as well. So, we extend it. All this and more will become
clear in Chapter 10, Object-Oriented Programming.

Finally, for part 3, look at the opening curly brace at the end of the line: {. Now look at the
bottom of the figure at part 4 of our code. This closing curly brace } denotes the end of the
class. Everything in between the opening and closing curly braces, {...}, is part of the
MainActivity class.

Methods inside the class
Now look at part 5 of the code. Here is that line of code in full with the key part for our
discussion highlighted:

protected void onCreate(Bundle savedInstanceState) {

This is a method signature. The highlighted part, onCreate, is the method name. We
make a method execute its code by using its name. We say we are calling a method when
we do this.

Although we will not concern ourselves now with the details of the parts of the code on
either side of the method name, you might have noticed Bundle, one of the classes we
imported at part 2 of our code. If we removed that related import line, Android Studio
would not know what Bundle was and it would be unusable and indicated with a red
underline as an error.

Telegram Channel @IRFaraExam

Exploring the project Java and the main layout XML 35

Our code would then not compile and run. Notice the very last thing in the preceding
line of code is an opening curly brace, {. This denotes the start of the code contained
within the onCreate method. Now jump to part 6 of our code and you will see a closing
curly brace, }. You might have guessed that this is the end of the method. Everything in
between the opening and closing curly braces of the onCreate method is the code that
executes when the method is called.

We do not need to go into what this code does yet, but as an overview, it sets up the
appearance/layout of the app by referring to a resource file that was auto-generated by
Android Studio when we created the project. I have highlighted the resource files with an
outline in the previous figure.

Parts 7 and 8 are also methods that I have collapsed to make the image and this
discussion more straightforward. Their names are onCreateOptionsMenu and
onOptionsItemSelected.

We know enough about our Java code to make some progress. We will see this code again
and change it later in this chapter.

Summary of the Java code so far
It is true that contained within the code we have just had an overview of, there is some
complex syntax. However, what we are doing is building up just enough knowledge about
this code, so we can work with it to begin to make fast progress in learning Java and
Android without having to learn hundreds of pages of Java theory first. By the end of the
book, all the code will make sense, but to make quick progress now, we just need to accept
that some of the details will remain a mystery for a little while longer.

Examining the app layout file
Now we will look at just one of the many .xml files. There are several different layout files
and we will meet them all throughout the course of the book, but let's start with the most
recognizable one, which decides most of the appearance of our app.

In the project explorer window, left-click on the res folder and then left-click on the
layout folder. Now double left-click on the fragment_first.xml file. The XML code
contents of the file is now displayed in the main window of Android Studio.

We can ignore the res generated folder.

Telegram Channel @IRFaraExam

36 First Contact: Java, XML, and the UI Designer

We will explore this XML code soon but first find and left-click the Design button (shown
next) to switch to the design view:

Figure 2.4 – To open design view

Now we can see the design view that shows us what the XML code will cause to be
displayed when the app is run in the emulator:

Figure 2.5 – App display

The preceding figure should look familiar because it shows the layout of our first app that
we ran at the end of the previous chapter – the one with the Hello first fragment text and
the Next button. If you look in the fragment_second.xml file from the same folder as
fragment_first.xml, you will see the second layout we saw in the previous chapter,
the one that had the Previous button on it. In fact, there are even more layout-related files
than we might first expect, but we will get to discussing them in this chapter and the next.

Most of the work that we do throughout the book when we design apps will be done in
this design view. It is important, however, to know what is going on behind the scenes.

Telegram Channel @IRFaraExam

Exploring the project Java and the main layout XML 37

The design view is a graphical representation of the XML code contained in the
fragment_first.xml file. Click on the Code tab (near the Design tab in the previous
figure) to see the XML code which forms the layout. I have annotated a screenshot of the
XML text, so we can discuss it next:

Figure 2.6 – Screenshot of the XML text

The first thing to note is that this file does not represent the entire layout. It does however
represent most of the surface area and the entire Hello first fragment message and the
Next button. Also, on the left-hand side, we can see the now-familiar + and – icons so we
can fold and unfold sections of the code.

UI layout elements
If we first look at the part of the code labeled 1, we can see that the very first thing is …
ConstraintLayout
. Now, ConstraintLayout is a UI element that is used to wrap other parts of the UI.

When we add a new element to a UI in Android, we always start a line with a < followed
by the element's name.

Telegram Channel @IRFaraExam

38 First Contact: Java, XML, and the UI Designer

The code that follows that rather long and cumbersome-looking line defines the
attributes this element will have. This can include dozens of different things depending
upon the type of UI element it is. Here, among a bit of other XML, we can see things such
as layout_width and layout_height. All these attributes define how the
ConstraintLayout element will appear on the user's screen. The attributes for the
ConstraintLayout element end at the first > labeled 1b.

If we look at the bottom of our XML screenshot, we will see some code labeled 2. This
code, </…ConstraintLayout>, marks the end of the ConstraintLayout element.
Anything in between the closing > of the element's attributes and </…
ConstraintLayout>, which defines its end, is considered a child of the element. So,
we can see that our ConstraintLayout has/contains two child elements. Let's look at
those children now.

UI text elements
Using what we just learned, we can say that the UI element that starts at position 3 in
the screenshot is called a TextView. Just like its parent, it starts with a < and its name:
<TextView
 If we look further into our TextView element, we can see it has several attributes. It has
a text attribute that is set to "Hello first fragment". This of course is the exact
text that our app shows to the user. It also has layout_width and layout_height
attributes that are both set to "wrap_content". This tells TextView it can take up as
much space as the content it has needs. As we will see throughout the book, there are
many more attributes available for this and other UI elements. The final attribute in
TextView is id, and we will see how we and Android use the id attribute in the next
section when we improve this first app.

Notice that the code at 4 in our XML screenshot is />. This marks the end of the
TextView element. This is slightly different to how the end of the ConstraintLayout
element was written. When an element in XML has no children, we can just end it like
this: />. When the element has children and its end comes further on in the code from
where its attributes are defined, it is much clearer to end the element by repeating its name
like this: </…ConstraintLayout>.

Telegram Channel @IRFaraExam

Adding buttons to the main layout file 39

Note
You might be wondering why the element name for TextView is clear and
concise (simply TextView) yet the full name for the ConstraintView
is preceded by complicated apparent clutter (androidx.
constraintlayout.widget.ConstraintLayout). This
ConstraintLayout element is a special layout that is used to ensure
our app's compatibility with older versions of Android. As we will see in
a minute when we add buttons to the app, most elements have simple and
concise names.

UI Button elements
Now we should be able to quickly identify that the code that starts at 5 in the screenshot
is a Button element. Just like its parent, it starts with a < and its name: <Button .. If
we look further into our Button, we can see it has several attributes. It has a text attribute
that is set to "Next". This of course is the exact text displayed on the button the user can
click. It also has layout_width and layout_height attributes that are both set to
"wrap_content". This, as with the TextView element, causes the onscreen button to
take up as much space as the content it has needs. The final attribute in Button is id,
and for buttons this is often a vital attribute, even more so than for some other parts of the
UI. As the id attribute can distinguish this button from other buttons, we can program
different functionality for different buttons based on the value held in the id attribute. We
will see this principle in action soon.

Notice that the code at 6 in our XML screenshot is />. As we have come to know, this
marks the end of the Button element.

We will edit and add to this XML code in the next section and learn more about the
attributes.

Note
The elements of a layout are often referred to as widgets.

Adding buttons to the main layout file
Here we will add a couple of button widgets to the screen and we will then see a fast way
to make them actually do something. We will add a button in two different ways, firstly
using the visual designer and secondly by adding to and editing the XML code directly.

Telegram Channel @IRFaraExam

40 First Contact: Java, XML, and the UI Designer

Adding a button via the visual designer
To get started with adding our first button, fragment_first.xml, open it in the editor
and switch back to the design view by clicking the Design tab (shown next):

Figure 2.7 – Design tab

Notice to the left-hand side of the layout we have a window that is called the Palette and is
shown next:

Figure 2.8 – Palette window

The palette is divided into two parts. The left-hand list has the categories of UI elements
and allows you to select a category, and then the right-hand side shows you all the
available UI elements from the currently selected category.

Make sure that the Common category is selected as shown in the previous figure. Now,
left-click and hold on the Button widget and then drag it onto the layout somewhere near
the top center.

It doesn't matter if it is not exact. It is good to practice getting it right, however. So, if you
are not happy with the position of your button, then you can left-click it to select it on the
layout and then tap the Delete key on the keyboard to get rid of it. Now you can repeat the
previous step until you have a new neatly placed button that you are happy with, as here:

Telegram Channel @IRFaraExam

Adding buttons to the main layout file 41

Figure 2.9 – Updating the layout

At this point, we could run the app on the emulator or on a real device and the button
would be there – kind of. If we clicked it, there would even be a simple animation to
represent the button being pressed and released. Feel free to try this now if you like. If you
do, you will notice that the button isn't positioned as you expect it to be:

Figure 2.10 – Button not positioned correctly

Don't concern yourself with this apparent anomaly for now; we will look into this over the
next few sections.

Next, we are going to edit the attributes of our button in the Attributes window.

Telegram Channel @IRFaraExam

42 First Contact: Java, XML, and the UI Designer

Editing the button's attributes
Make sure the button is selected by left-clicking it. Now find the Attributes window to the
right of the editing window as shown next:

Figure 2.11 – Attributes window

Telegram Channel @IRFaraExam

Adding buttons to the main layout file 43

In the previous figure, you can see that we have access to a wide selection of attributes
from the currently selected UI element. To reveal more of the attributes, we click the
different categories of attributes and scroll through them using the scrollbar to the right.
If they are not open already by default, left-click on the Common Attributes and All
Attributes sections' arrows to reveal their options.

Now you can see the full details of the button and we can set about editing it. It might
seem surprising the substantial number of attributes that something as simple as a button
has. This is a sign of the versatility and power that the Android API provides for UI
manipulation.

As you can see, there is a large array of different attributes that we can edit right here in
the UI designer. In Chapter 13, Anonymous Classes – Bringing Android Widgets to Life, we
will also edit and manipulate these attributes using our Java code.

For now, we will edit just one attribute. Scroll the Attributes window until you see the
onClick attribute in the Common Attributes section and then left-click it to select it for
editing, as shown here:

Figure 2.12 – Common Attributes section

Note
If you ever have trouble finding an attribute, you can always find it in the
All Attributes section, where attributes are arranged in alphabetical order.
Therefore, the onClick attribute can also be found about two-thirds of the way
down the lengthy list of the All Attributes section.

Telegram Channel @IRFaraExam

44 First Contact: Java, XML, and the UI Designer

Type topClick in the onClick attribute's edit box and press Enter on the keyboard.
Be sure to use the same case, including the slightly counterintuitive lowercase t and
uppercase C.

The Attributes window will look like this when you are done:

Figure 2.13 – onClick option

What we have done here is named the Java method in our code that we want to call when
this button is clicked by the user. The name is arbitrary but as this button is in the top part
of the screen, the name seems meaningful and easy to remember. The odd casing that we
used is a convention that will help us keep our code clear and easy to read. We will see the
benefits of this as our code gets longer and more complicated.

Of course, the topClick method doesn't exist yet. Android Studio is very helpful, but
there are some things we need to do ourselves. We will write this method using Java code
after we have added another button to our UI. You could run the app at this point and it
would still work. But if you click the button, it will crash, and you will get an error because
the method does not exist. Android Studio is forewarning us of this impending crash by
outlining the onClick attribute in red, as shown in the previous figure. If you hover the
mouse cursor over this red outline, you will see the details of the problem: Corresponding
method handler… Not found.

Examining the XML code for the new button
Before we add our final button for this project. Click the Code tab to switch back to seeing
the XML code that makes our UI.

Notice that there is a new block of code among the XML that we examined earlier. Here is
an image of the new block of code:

Figure 2.14 – New block of code among the XML

Telegram Channel @IRFaraExam

Adding buttons to the main layout file 45

Also, notice the following details, which should correspond to what we know about XML
and Android UI elements:

• The new code starts with the text <Button and ends with />.

• The code has a range of attributes that define the button, including layoutWidth
and layoutHeight.

• The code includes the onClick attribute that we just added with a value of
"topClick".

• The topClick value of the onClick attribute is underlined in red, showing the
missing method error.

• The start and end of the code representing the button are enclosed within the
ConstraintLayout element.

As in the design view, you can hover the mouse cursor over the red-underlined
topClick code to reveal the details of the problem: Corresponding method
handler… Not found.

Note
During the writing of this book, Android Studio updated the way it shows
errors in XML. Currently, it highlights the error in red, not underlining in red
as shown in the figures and descriptions. The underlining is clearer in black
and white print so they have been left as they are.

We can see that the issue is that Android Studio expects a method called topClick to
be implemented within our Java code. We will do this as soon as we have added that
second button.

Adding a button by editing the XML code
Just for variety and to prove that we can, we will now add another button using only XML
code, not the UI designer. Most of the time, we will use the UI designer, but this quick
exercise should cement in your mind the relationship between the UI designer and the
underlying XML code.

We will achieve this by copying and pasting the code for the existing button. We will then
make some minor edits to the pasted code.

Telegram Channel @IRFaraExam

46 First Contact: Java, XML, and the UI Designer

Left-click just before the button code that starts <Button. Notice that the beginning and
end of the code now have a slight highlight:

Figure 2.15 – Button code

This has identified the part of the code we want to copy. Now left-click and drag to select
all the button code, including the highlighted start and end, as shown in this next figure:

Figure 2.16 – Select all the button code

Press the Ctrl + C keyboard combination to copy the highlighted text. Place the keyboard
cursor below the existing button code and tap the Enter key a few times to leave some
spare empty lines.

Press the Ctrl + V keyboard combination to paste the button code. At this point, we have
two buttons. There are a couple of problems, however:

Figure 2.17 – Additional error

Telegram Channel @IRFaraExam

Adding buttons to the main layout file 47

We have an additional error in both blocks of code that represent our buttons. The id
attribute (in both blocks) is underlined in red. The reason for this error is that both
buttons have an id attribute that is the same. The id attribute is supposed to distinguish a
UI element from all other UI elements. Let's fix that.

Giving the buttons unique id attributes
We could solve the problem by calling the second button, button2, but it would be
more meaningful to change them both. Edit the code in the first button to give it an ID of
buttonTop. To do so, find the following line of code (in the first button):

android:id="@+id/button"

Change it to this:

android:id="@+id/buttonTop"

Note
Notice the lowercase b in button and the uppercase T in Top.

Now identify this line of code in the second button:

android:id="@+id/button"

Change it to this:

android:id="@+id/buttonBottom"

The errors on the id attribute lines are gone. At this point, you might think we can move
on to solve our missing method problem.

However, if you run the app and take a quick glance at it, you will see we only appear to
have one button. Not only that but (as alluded to previously) the buttons are not in the
place we expected them to be either:

Figure 2.18 – Single button

Telegram Channel @IRFaraExam

48 First Contact: Java, XML, and the UI Designer

The reason for this is we haven't explicitly positioned them, so they have defaulted to the
top left. The position we see on the Design tab is just a design-time position. Let's change
that now.

Positioning the two buttons in the layout
The reason we can only see one button is that both buttons are in the same position. The
second button is exactly covering the first button. And even in the Design tab (feel free to
have a look), the buttons are still sat on top of each other, although they are in the middle
of the screen.

Note
You might be wondering why the UI layout tool was designed in this
apparently counterintuitive way. The reason is flexibility. As we will see in the
next two chapters, not only is it possible to position UI elements differently
at design time to when the app is running but there is also a whole bunch
of different layout schemes that the app designer (that's you) can choose
from to suit their plans. This flexibility results in a little awkwardness while
learning about Android but great design power once you have got past the
awkwardness. Don't worry: we will move a step at a time until you have this
thing beaten.

We will make Android Studio solve the problem for us automatically by first adding to
our code and then using the UI designer. First, let's get the design-time layout right. In the
code for the second button, find this line of code:

tools:layout_editor_absoluteY="30dp" />

Edit it to be the same as this:

tools:layout_editor_absoluteY="100dp" />

This subtle change will move the second button down a little, but only for design time. If
you look in the Design tab, the button is positioned neatly underneath the first button,
but if you run the app on the emulator, they are both still in the top-left corner and on top
of one another.

Telegram Channel @IRFaraExam

Adding buttons to the main layout file 49

Note
It is possible, even likely, that the exact dp measurements in your layout will
be slightly different to those shown in the book. As long as the second button's
layout_editor_absoluteY attribute is about 70dp greater than the
first, then all will be neat and tidy. Feel free to play with this attribute on both
buttons while switching between the Code and Design tabs until the buttons
are positioned to your liking.

When you are satisfied with the position of the buttons, switch to the Design tab and find
the Infer constraints button, shown next:

Figure 2.19 – Infer constraints button

Click the Infer constraints button. Android Studio will edit the XML. Let's take a brief
look at what has happened behind the scenes. From the end of both of the buttons, the
following lines of code were removed.

If the constraints aren't being applied, hit the Clear All Constraints button, which is to
the left of Infer constraints; sometimes Android Studio can get confused and needs to
reset the existing constraints before inferring the rest:

tools:layout_editor_absoluteX="147dp"

tools:layout_editor_absoluteY="30dp" />

These two lines of code were what positioned the buttons horizontally (…absoluteX)
and vertically (…absoluteY).

Android Studio also added four lines of code to the first button and three to the second.
Here is the code added near the start of the first button:

android:layout_marginTop="30dp"

This code causes the button to have a margin of 30 at the top. But at the top relative to
what exactly? Look at these three lines of code that were added at the end of the first
button:

app:layout_constraintEnd_toEndOf="parent"

app:layout_constraintStart_toStartOf="parent"

app:layout_constraintTop_toTopOf="parent" />

Telegram Channel @IRFaraExam

50 First Contact: Java, XML, and the UI Designer

Notice the new attributes of layout_constraintEnd_toEndOf, layout_
constraintStart_toStartOf, and layout_constraintTop_toTopOf. The
value assigned to each of these attributes is "parent". This causes the first button to
be positioned relative to the parent UI element. The parent is the containing layout: the
ConstraintLayout element.

Now look at the three lines of code added to the second (bottom) button.

Near the start of the code, we see this:

android:layout_marginTop="22dp"

And at the end of the code for the second button, we see these two extra lines:

app:layout_constraintStart_toStartOf="@+id/buttonTop"

app:layout_constraintTop_toBottomOf="@+id/buttonTop" />

This means that the second button is positioned with a margin of 22 relative to the
buttonTop widget.

Note
The dp code is a unit of measurement/distance and will be discussed in more
depth in Chapter 5, Beautiful Layouts with CardView and ScrollView. The
precise values for the dp measurement will likely vary slightly on your layout.

Now run the app and you will see we have two distinct buttons. One has an id attribute of
buttonTop and it is above the other button, with an id attribute of buttonBottom:

Figure 2.20 – Two button options

Telegram Channel @IRFaraExam

Leaving comments in our Java code 51

Clearly, there is more to layouts than I have alluded to so far, but you have had your first
glance at one of the options we have to design the UI of our apps. We will be taking a
closer look at the ConstraintLayout layout element as well as exploring more layout
options in Chapter 4, Getting Started with Layouts and Material Design.

We want to make one more change in our XML code.

Making the buttons call different methods
Switch back to the Code tab and identify this next line of code in the second
(buttonBottom) button:

android:onClick="topClick"

Edit the code to this:

android:onClick="bottomClick"

Now we have two buttons, one above the other. The top one has an id attribute of
buttonTop and an onClick attribute with a value of topClick. The other has an id
attribute of buttonBottom and an onClick attribute with a value of bottomClick.

These last XML code changes now mean we need to code two methods (topClick and
bottomClick) in our Java code.

Note
It is OK for two buttons to call the same method when they are clicked; it is
not a syntax error. However, most buttons do have distinct purposes, so this
exercise will be more meaningful if our buttons do different things.

We will do that soon, but before we do, let's learn a little bit more about Java comments
and look at some Java code we can write to send messages. We will learn to send messages
to the user to keep them informed and to ourselves for debugging purposes.

Leaving comments in our Java code
In programming, it is always a clever idea to write notes, known as code comments, and
sprinkle them liberally throughout your code. This is to remind us what we were thinking
at the time we wrote the code. To do this, you simply append a double forward slash and
then type your comment, as follows:

// This is a comment and it could be useful

Telegram Channel @IRFaraExam

52 First Contact: Java, XML, and the UI Designer

In addition, we can use comments to comment out a line of code. Suppose we have a line
of code that we temporarily want to disable. We can do so by adding the two forward
slashes, like this:

// The code below used to send a message

// Log.i("info","our message here");

// But now it doesn't do anything

// And I am getting ahead of where I should be

Note
Using comments to comment out code should only be a temporary measure.
Once you have found the correct code to use, commented-out code should be
deleted to keep the code file clean and organized.

Let's look at two separate ways to send messages in Android, and then we can write some
methods that will send messages when our new UI buttons are pressed.

Coding messages to the user and the
developer
In the introduction to this chapter and in the previous chapter, we talked a bit about using
other people's code, specifically via the classes and their methods, of the Android API. We
saw that we could do some quite complex things with insignificant amounts of code (such
as talk to satellites).

To get us started, we are going to use two different classes from the Android API that
allow us to output messages. The first class, Log, allows us to output messages to the
Logcat window. The second class, Toast, is not a tasty breakfast treat, but it will produce
a toast-shaped pop-up message for our app's user to see.

Here is the code we need to write to send a message to the Logcat window:

Log.i("info","our message here");

Exactly why this works will become clearer in Chapter 10, Object-Oriented
Programming, but for now, we just need to know that whatever we put between the two
sets of quote marks will be output to the Logcat window. We will see where to write this
type of code shortly.

Telegram Channel @IRFaraExam

Writing our first Java code 53

Here is the code we need to write to send a message to the user's screen:

Toast.makeText(this, "our message",

Toast.LENGTH_SHORT).show();

This is a very convoluted-looking line of code, and exactly how it works, again, will not
become clear until Chapter 10, Object-Oriented Programming. The important thing
here is that whatever we put between the quote marks will appear in a pop-up message
to our users.

Let's put some code, much like we have just seen, into our app for real.

Writing our first Java code
So, we now know the code that will output to Logcat or the user's screen. But where do
we write the code? To answer this question, we need to understand that the onCreate
method in MainActivity.java executes as the app is preparing to be shown to the
user. So, if we put our code at the end of this method, it will execute just as the user sees
the app. Sounds good.

Note
We know that to execute the code in a method, we need to call it. We
have wired our buttons up to call a couple of methods: topClick and
bottomClick. Soon we will write these methods. But who or what is
calling onCreate!? The answer to this mystery is that the Android operating
system itself calls onCreate. It does so when the user clicks the app icon
to run the app. In Chapter 6, The Android Lifecycle, we will look deeper at this
phenomenon, and it will be clear exactly what code executes and when. You
don't need to completely comprehend this now. I just wanted to give you an
overview of what was going on.

Let's quickly try this out. Switch to the MainActivity.java tab in Android Studio.

We know that the onCreate method is called just before the app starts. Let's copy and
paste some code into the onCreate method of our app and see what happens when we
run it.

Telegram Channel @IRFaraExam

54 First Contact: Java, XML, and the UI Designer

Adding message code to the onCreate method
Find the closing curly brace } of the onCreate method and add the highlighted code
shown next. In the code, I haven't shown the complete contents of the onCreate method
but have used … to indicate some lines of code not being shown. The important thing is to
place the new code (shown in full) right at the end but before that closing curly brace, }:

@Override

protected void onCreate(Bundle savedInstanceState) {

…

…

…

// Your code goes here

 Toast.makeText(this, "Can you see me?",

 Toast.LENGTH_SHORT).show();

 Log.i("info", "Done creating the app");

}

Notice that the two instances of the word Toast and the word Log are highlighted in red
in Android Studio. They are errors. We know that Toast and Log are classes and that
classes are containers for code.

The problem is that Android Studio doesn't know about them until we tell it about them.
We must add an import for each class. Fortunately, this is semi-automatic.

Left-click on the red Toast code in the onCreate method. Now hold the Alt key and
then tap Enter. When prompted, choose Import class. Now repeat this process for Log.
Android Studio adds the import directives at the top of the code with our other imports
and the errors are gone.

Note
Alt + Enter is just one of many useful keyboard shortcuts. The following link
is to a keyboard shortcut reference for Android Studio. More specifically, it
is for the IntelliJ Idea IDE, upon which Android Studio is based. Look at and
bookmark this web page; it will be invaluable over the course of this book:
http://www.jetbrains.com/idea/docs/IntelliJIDEA_
ReferenceCard.pdf.

Telegram Channel @IRFaraExam

http://www.jetbrains.com/idea/docs/IntelliJIDEA_ReferenceCard.pdf
http://www.jetbrains.com/idea/docs/IntelliJIDEA_ReferenceCard.pdf

Writing our first Java code 55

Scroll to the top of MainActivity.java and look at the added import directives.
Here they are for your convenience:

import android.util.Log;

import android.widget.Toast;

Run the app in the usual way and look at the output in the Logcat window.

Examining the output
The next figure shows a screenshot of the output in the Logcat window:

Figure 2.21 – Output in the Logcat window

Look at the Logcat window, you can see our message Done creating the app was output,
although it is mixed up among other system messages that we are currently not interested
in. If you watch the emulator when the app first starts, you will also see the neat pop-up
message that the user will see:

Figure 2.22 – Pop-up message

It is possible that you might be wondering why the messages were output at the time
they were. The answer is that the onCreate method is called just before the app starts to
respond to the user. It is for this reason, it's common practice among Android developers
to put code in this method to get their apps set up and ready for the user.

Now we will go a step further and write our own methods that will be called by our
two buttons in the UI. We will place similar Log and Toast messages inside these
new methods.

Telegram Channel @IRFaraExam

56 First Contact: Java, XML, and the UI Designer

Writing our own Java methods
Let's get straight on with writing our first Java methods with some more Log and Toast
messages inside them.

Note
Now would be a good time, if you haven't already, to get the download bundle
that contains all the code files. You can view the completed code for each
chapter. For example, the completed code for this chapter can be found in the
Chapter 2 folder. I have further subdivided the Chapter 2 folder into
java and res folders (for Java and resource files). In chapters with more
than one project, I will divide the folders further to include the project name.
You should view these files in a text editor. My favorite is Notepad++, a free
download from https://notepad-plus-plus.org/download/.
The code viewed in a text editor is easier to read than from the book directly,
especially the paperback version, and even more so where the lines of code are
long. The text editor is also a great way to select sections of the code to copy
and paste into Android Studio. You could open the code in Android Studio, but
then you'd risk mixing up my code with the auto-generated code of Android
Studio.

Identify the closing curly brace, }, of the MainActivity class.

Note
You are looking for the end of the entire class, not the end of the onCreate
method as in the previous section. Take your time to identify the new code and
where it goes among the existing code.

Inside that curly brace, enter the following code that is highlighted.

@Override

protected void onCreate(Bundle savedInstanceState) {

…

…

…

…

}

…

…

Telegram Channel @IRFaraExam

https://notepad-plus-plus.org/download/

Writing our first Java code 57

…

public void topClick(View v){

 Toast.makeText(this, "Top button clicked",

 Toast.LENGTH_SHORT).show();

 Log.i("info","The user clicked the top

 button");

}

public void bottomClick(View v){

 Toast.makeText(this, "Bottom button clicked",

 Toast.LENGTH_SHORT).show();

 Log.i("info","The user clicked the bottom

 button");

}

} // This is the end of the class

Notice that the two instances of the word View might be red, indicating an error. Simply
use the Alt + Enter keyboard combination to import the View class and remove the
errors.

Note
The reason I said there "might" be an error is because it depends on how you
entered the code. If you copied and pasted the code, then Android Studio may
automatically add the View class import code. If you typed the new code, then
the error will appear, and you will need to use the Alt + Enter key solution. This
is just a quirk of Android Studio.

Deploy the app to a real device or emulator in the usual way and start tapping the buttons
so we can observe the output.

Telegram Channel @IRFaraExam

58 First Contact: Java, XML, and the UI Designer

Examining the output
At last, our app does something we told it to do when we told it to do it. We can see that
the method names we defined in the button onClick attribute are indeed called when
the buttons are clicked, and the appropriate messages are added to the Logcat window and
the appropriate Toast messages are shown to the user.

Admittedly, we still don't understand why or how the Toast and Log classes really
work, neither do we fully comprehend the public void and (View v) parts of our
method's syntax (or much of the rest of the auto-generated code). This will become clearer
as we progress. As said previously, in Chapter 10, Object-Oriented Programming, we will
take a deep dive into the world of classes, and in Chapter 9, Learning Java Methods, we will
master the rest of the syntax associated with methods.

Check the Logcat window output. You can see that a log entry was made from the
onCreate method just as before, as well as from the two methods that we wrote
ourselves, each time you clicked one of the buttons. In the following figure, you can see I
clicked each button three times:

Figure 2.23 – Logcat window output

As you are now familiar with where to find the Logcat window, in future I will present
Logcat output as trimmed text as follows, as it is easier to read:

The user clicked the top button

The user clicked the top button

The user clicked the top button

The user clicked the bottom button

The user clicked the bottom button

The user clicked the bottom button

Telegram Channel @IRFaraExam

Frequently asked questions 59

And in the next figure, you can see that the top button has been clicked and the
topClick method was called, triggering the pop-up Toast message highlighted here:

Figure 2.24 – Pop-up Toast message

Throughout this book, we will regularly output to the Logcat window, so we can see what
is going on behind the UI of our apps. Toast messages are more for notifying the user that
something has occurred. This might be a download that has completed, a new email that
has arrived, or some other occurrence that the user might want to be informed about.

Frequently asked questions
1. Can you remind me what methods are?

Methods are containers for our code that can be executed (called) from other parts
of our code. Methods are contained within a class.

2. Like the first, I found this chapter tough going. Do I need to reread it?

No; if you managed to build the app, you have made enough progress to handle the
next chapter. All the blanks in your knowledge will be steadily filled in and replaced
with glorious moments of realization as the book progresses.

Telegram Channel @IRFaraExam

60 First Contact: Java, XML, and the UI Designer

Summary
We have achieved a lot in this chapter. It is true that much of the XML code is still
generally incomprehensible. That's OK, because in the next two chapters we will be
really getting to grips with the visual designer and learning more about XML, although
ultimately our aim is to use XML as little as possible.

We have seen how, when we drag a button onto our design, the XML code is generated for
us. Also, if we change an attribute in the Attributes window, then, again, the XML code is
edited for us. Furthermore, we saw that we can type (or, in our case, copy and paste) XML
code directly in the Code tab to create new buttons on our UI or edit existing ones.

We have seen as well as written our first Java, including comments that help us document
our code, and we have even added our own methods to output debugging messages to the
Logcat window and pop-up Toast messages to the user.

In the next chapter, we will take a full guided tour of Android Studio to see exactly where
different things get done at the same time as understanding how our project's assets, such
as files and folders, are structured and how we can manage them. This will prepare us to
go for a more in-depth look at UI design in Chapter 4, Getting Started with Layouts and
Material Design, and Chapter 5, Beautiful Layouts with CardView and ScrollView, when we
will build some significant real-world layouts for our apps.

Telegram Channel @IRFaraExam

3
Exploring Android

Studio and the
Project Structure

In this chapter, we will create and run two more Android projects. The purpose of these
exercises is to explore more deeply Android Studio and the structure of Android projects.

When we build our apps ready for deployment, the code and the resource files need to be
packed away in an Android Package (APK) file—just right. Therefore, all the layout files
(and other resources that we will soon discover) need to be in their correct structures.

Fortunately, Android Studio handles this for us when we create a project from a template.
However, we still need to know how to find and amend these files, how to add our own
(and sometimes remove) files created by Android Studio, and how the resource files are
interlinked, sometimes with each other and sometimes with the Java code (autogenerated
and our own).

Along with understanding the composition of our projects, it will also be beneficial to
make sure we get the most from the emulator.

Telegram Channel @IRFaraExam

62 Exploring Android Studio and the Project Structure

Note
Emulators are particularly useful when you want to make sure that your app
will work on hardware that you don't own. Also, learning about some of the
latest features (as we will in this book) often requires the latest handset, and
an emulator is a cost-effective way of following along with all the mini-apps
without buying the latest phone.

In this chapter, we will look at the following topics:

• Exploring the file and folder structure of the Empty Activity project template

• Exploring the file and folder structure of the Basic Activity project template

• Seeing the difference between the Empty Activity and Basic Activity templates

• Exploring the Android emulator

This chapter will leave us in a good position to build and deploy multiple different user
interface (UI) designs in the next chapter.

Technical requirements
You can find the code present in this chapter on GitHub at https://github.com/
PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2003.

Project Explorer and project anatomy
When we create a new Android project, we most often do so using a project template, just
as we did in Chapter 1, Beginning Android and Java. The template we use determines the
exact selection and contents of files that Android Studio will generate. While there are big
similarities across all projects that are worth noting, seeing the differences can also help.
Let's build two template projects and examine the files, their contents, and how they are
all linked together through the code (Extensible Markup Language (XML) and Java). We
begin by creating an Empty Activity project.

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2003
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2003
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2003

Exploring the file and folder structure of the Empty Activity project template 63

Exploring the file and folder structure of the
Empty Activity project template
The simplest project type with an autogenerated UI is the Empty Activity project
template. The UI is almost empty, but it is there ready to be added to. When we create
a project even with an empty UI, Android Studio also autogenerates the Java code to
display the UI. Therefore, when we add it to the empty UI, it is ready to be displayed.

Let's create an Empty Activity project. This is almost the same process as in Chapter 1,
Beginning Android and Java, with one slight difference that I will point out.

If you have the project from Chapter 2, First Contact: Java, XML, and the UI Designer,
open, select File | New | New Project…. Alternatively, if you are on the Android Studio
welcome screen, select Start a new Android Studio project. Then, proceed as follows:

1. On the Select a Project Template window, select Empty Activity. This is the bit that
is different from what we did in Chapter 1, Beginning Android and Java.

2. In the Configure your project screen, change the Name field to Empty
Activity App.

3. The rest of the settings can be left at their defaults, so just click Finish.

Android Studio will generate all the code and the other project resources. Now, we can see
what has been generated and relate it to what we already know about what to expect in the
Project Explorer window.

If the emulator is not already running, launch it by selecting Tools | AVD Manager,
and then start your emulator in the Your Virtual Devices window. Run the app on the
emulator by clicking the play button in the quick launch bar, as we have done a few times
already for our previous project.

Telegram Channel @IRFaraExam

64 Exploring Android Studio and the Project Structure

Look at the app and notice how it is a little bit different from that of the first project. It is—
well—empty: no menu at the top; no floating button at the bottom. It does, however, still
have some text that says Hello World!, as can be seen in the following screenshot:

Figure 3.1 – Hello world!

Now that we have a brand-new Empty Activity project, let's explore the files and folders
that Android Studio has generated for us.

Exploring an Empty Activity project
Now, it is time to go on a deep dive into the files and folders of our app. This will save us
lots of time and head-scratching later in the book. Please note, however, that there is no
need to memorize where all these files go, and there is even less need to understand the
code within the files. In fact, parts of the XML will remain a mystery even at the end of the
book, but this will not stop you designing, coding, and releasing amazing apps.

Telegram Channel @IRFaraExam

Exploring the file and folder structure of the Empty Activity project template 65

In the following screenshot, look at the Project Explorer window as it is just after the
project is created:

Figure 3.2 – Project Explorer window

Notice the two arrows indicated in the previous screenshot? These, as you can probably
guess, allow us to expand the app and Gradle Scripts folders. It is possible that your
folders are already expanded. Why not try out the arrows, and expand and collapse them
a few times?

Note
We do not need to explore the Gradle Scripts folder in the context of
this book. Gradle is a significant part of Android Studio, but its role is to hide
from the user the quite complicated processes that Android Studio performs—
things such as adding resource files, and compiling and building projects.
Therefore, we don't need to dig into this any further. If, however, you decide
to take Android to the next level, then getting a good understanding of Gradle
and its relationship with Android Studio is time well invested.

Telegram Channel @IRFaraExam

66 Exploring Android Studio and the Project Structure

We will explore in detail the app folder. Click the arrow next to the app folder to expand
its contents, and we will begin exploring. The first level of contents is shown in the
following screenshot:

Figure 3.3 – Exploring the app folder

We have revealed four more folders: manifests, java, java(generated), and res.
Let's look at all four, starting at the top.

Note
The style guidelines that Packt uses for its books suggest this font for text
that appears on the user's screen and this font for filenames and folder
names. As the files and folders that we are discussing are both files and folders,
as well as appearing on the screen, I have opted for using just the latter font
for consistency and because it is more compact, and I will use this option
whenever the choice is ambiguous throughout the book.

The manifests folder
The manifests folder has just one file inside it. Expand the manifests folder and
double-click the AndroidManifest.xml file. Notice that the file has been opened in
the editor window, and a tab has been added so that we can easily switch back between
this and other files. The next screenshot shows the new tab that has been added, as well as
the XML code contained in the AndroidManifest.xml file within the manifests
folder:

Telegram Channel @IRFaraExam

Exploring the file and folder structure of the Empty Activity project template 67

Figure 3.4 – New tab added

We don't need to understand everything in this file, but it is worth pointing out that we
will make occasional amendments here—for example, when we need to ask the user for
permission to access features of their device. We will also edit this file when we want to
make a fullscreen app for immersivity, such as the drawing app that starts in Chapter 21,
Threads and Starting the Live Drawing App.

Notice that the structure of the file is similar to the structure of the layout file we saw
in the previous chapter—for instance, there are clearly denoted sections that start
with <section name and end with </section name>. Real examples of this are
<application and </application>, as well as <activity and </activity>.

Indeed, the entire file contents, apart from the first line, are wrapped in <manifest and
</manifest>.

Just as if we were entering the brackets of a calculation into a calculator, these opening
and closing parts must match or the file will cause an error in our project. Android Studio
indents (places tabs) in front of the lines to make the sections and their depth in this
structure clearer.

Telegram Channel @IRFaraExam

68 Exploring Android Studio and the Project Structure

A couple of specific parts of this code are worth noting, so I will point out some of
the lines.

The line shown next tells Android that the icon we want to show the user in their app
drawer/home screen to launch the app is contained in the mipmap folder and is called
ic_launcher:

android:icon="@mipmap/ic_launcher"

We will verify this for ourselves as we continue our exploration.

The next line has two aspects worth discussing. First, it denotes the name that we gave
our app; and second, that name is contained as a String with a label of app_name, as
illustrated here:

android:label="@string/app_name"

Note
In programming, including with Java and XML, a String is any alphanumeric
value. We will learn loads more about Strings throughout the book, starting
in Chapter 7, Java Variables, Operators, and Expressions. We can therefore
guess that the alphanumeric value of the label of app_name is Empty
Activity App because that is what we called the app when we created it.

This might sound slightly odd, but we will see this file soon (and its label), and in later
projects, we will add more labels and values to it. We will also come to understand the
reasons why we add text to our apps in what might at this stage seem quite a convoluted
manner.

We could discuss every line in the AndroidManifest.xml file but we don't need to.
Let's look at just two more, as they are related to each other. The line shown next indicates
the name of our Activity, which Android Studio chose when we created the project. I have
highlighted the Activity name here, just to make it stand out:

<activity android:name=".MainActivity">

And this next line, which appears within the <activity and </activity> tags,
denotes that it is an attribute of activity and shows that this Activity is the one that
should run when the app is started. It is LAUNCHER:

<category android:name="android.intent.category.LAUNCHER" />

Telegram Channel @IRFaraExam

Exploring the file and folder structure of the Empty Activity project template 69

This implies that our apps can have more than one Activity. Very often, if you have an app
with multiple screens—such as a home screen, a settings screen, and so on—they are built
from multiple Activity class instances.

A note about Activity and activity. In XML, as with the AndroidManifest file,
activity is in lowercase, but in Java the Activity class has an uppercase A. This is
just convention and is nothing to be concerned about. As we have just seen, activity in
XML has a name attribute with a value that refers to an instance of a Java Activity.

Let's dig into the java folder. I wonder what we will find in there.

The java folder
I apologize for the slightly sarcastic comment. We will, of course, find all the Java code.
To begin with, this consists of just one file, but as our projects grow we will add more.
Expand the java folder and you will find three more folders, as shown in the following
screenshot:

Figure 3.5 – Expand the java folder

Throughout this book, we will only need one of these three folders—the top one. The
names of these folders are composed of the package name (chosen when we created the
app) and the app name, in all lowercase and with no spaces (also chosen when we created
the app).

Telegram Channel @IRFaraExam

70 Exploring Android Studio and the Project Structure

Note
The reason there is more than one folder with the same name is for advanced
reasons to do with automated testing, which is beyond the scope of this book.
Therefore, you can safely ignore folders that end with (androidTest) and
(test).

The only folder we are interested in during the course of this book is the top one, which
for this app (on my screen) is com.gamecodeschool.emptyactivityapp.
Depending upon your chosen package name and the name of the app we are currently
working on, the folder name will change, but it will always be the top one that we need to
access and add—or edit—the contents of.

Expand the com.gamecodeschool.emptyactivityapp (or whatever yours is
called) folder now to view its contents. In the next screenshot, you can see that the folder
has just one file:

Figure 3.6 – com.gamecodeschool.emptyactivityapp folder

This file is MainActivity.java, although the file extension isn't shown in the project
window even though it is in the tabs above the editor window. In fact, all the files in the
java/packagename.appname folder will have a .java extension. If you double-click
the MainActivity.java file, it will open in the editor window, although we could have
just clicked the MainActivity.java tab above the editor window. As we add more
Java files, knowing where they are kept will be useful.

Telegram Channel @IRFaraExam

Exploring the file and folder structure of the Empty Activity project template 71

Examine the MainActivity.java file, and you will see it is a simplified version of
the Java file we worked with in the first project. It is the same except that there are fewer
methods and less autogenerated code in the onCreate method. The methods are missing
because the UI is simpler and therefore they are not needed, and Android Studio didn't
generate them.

For reference, look at the contents of the MainActivity.java file in this next
screenshot. I have outlined one line from the code:

Figure 3.7 – MainActivity.java file

It still has the onCreate method that executes when the app is run by the user, but there
is much less code in it and onCreate is the only method. Look at the last line of code in
the onCreate method—we will discuss this before moving on to explore the res folder.
Here is the line of code under discussion:

setContentView(R.layout.activity_main);

The code is calling a method named setContentView and it is passing some data into
the setContentView method, for the code in the setContentView method to make
use of. The data being passed to setContentView is R.layout.activity_main.

For now, I will just mention that the setContentView method is provided by the
Android application programming interface (API), and it is the method that prepares
and displays the UI to the user. So, what exactly is R.layout.activity_main?

We will find out by exploring the res folder, but a quick mention of the Java
(generated) folder so that we don't trouble ourselves with it as we progress. The
first thing to note is that the folder is autogenerated the first time the app is run on the
emulator or a real device, so if you haven't run the app, you won't see it.

Telegram Channel @IRFaraExam

72 Exploring Android Studio and the Project Structure

The Java (generated) folder
This folder contains code generated by Android Studio and we do not need to concern
ourselves with what goes in it. Even advanced users who might need it generally only use
it for reference.

Let's get on to the res folder and that R.layout.activity_main code.

The res folder
The res folder is where all the resources go. Left-click to expand the res folder,
and we will examine what's inside. Here is a screenshot of the top level of folders
inside this folder:

Figure 3.8 – res folder

Let's begin at the top of the list, with the drawable folder.

The res/drawable folder
The name gives things away a little bit, but the drawable folder holds much more than
just graphics. As we progress through the book, we will indeed add graphics to this folder.
However, now, it holds just two files.

These files are ic_launcher_foreground and ic_launcher_background.
We will not examine either file because we will never need to alter them, but I will just
mention what they are.

If you open the files, you will see they are quite long and technical. They include what
appear to be lists of coordinates, colors, and more besides. They are what is known as
a graphical mask, used by Android to adapt/mask other graphics—specifically, in this
case, the launcher icon of the app. The files give instructions to Android on how to adapt
the app launcher icon.

Telegram Channel @IRFaraExam

Exploring the file and folder structure of the Empty Activity project template 73

This system is made available so that different device manufacturers can create their own
masks to suit their own Android devices. The masks, which are in the drawable folder
by default (ic_launcher_foreground and ic_launcher_background), are
default adaptive masks that add visually pleasing shadows and depth to the launcher icon.

Note
If the concept of adaptive icons is interesting to you, then you can see a full
and very visual explanation at this link to the Android Developers website,
at https://developer.android.com/guide/practices/
ui_guidelines/icon_design_adaptive. You do not need to see
this page to continue.

We know enough about the drawable folder for now, so let's move on to the
layout folder.

The res/layout folder
The res folder is where all the resources for your app go, such as icons, layouts (XML
files), sounds, and strings. Let's take a closer look.

Expand the layout folder and you will see a layout file named activity_main.xml,
and if you open it to view its contents, you will see it is much like the one we edited in
the previous chapter. There is less in it this time because we generated an Empty Activity
project. It is not entirely empty as it still holds a ConstraintLayout element, wrapping
a TextView widget that says Hello World!.

Be sure to look at the contents, but this is not the most interesting thing here. Look closely
at the name of the file (without the XML file extension): activity_main.

Now, think back to the Java code in the MainActivity.java file. Here is the line of
code that we said sets up the UI. I have highlighted a portion of the code:

setContentView(R.layout.activity_main);

The R.layout.activity_main code is indeed a reference to the activity_main
file within the res/layout file. This is the connection between our Java code and our
XML layout/design.

Telegram Channel @IRFaraExam

https://developer.android.com/guide/practices/ui_guidelines/icon_design_adaptive
https://developer.android.com/guide/practices/ui_guidelines/icon_design_adaptive

74 Exploring Android Studio and the Project Structure

Note
There is a difference from the first project other than the contents of
activity_main.xml—in the layout folder of the first project, there
were multiple additional files. Later in this chapter, we will build another
project using the same template we used in the first chapter (Basic Activity) to
understand why.

Before that, let's explore the final two folders and all their sub-folders, starting with the
next in the list: mipmap.

The res/mipmap folder
The mipmap folder is straightforward—well, fairly. Expand the folder to see its contents,
as illustrated in the following screenshot:

Figure 3.9 – mipmap folder

Here, we can see two sub-folders: ic_launcher and ic_launcher_round. The
contents of ic_launcher are graphics for the regular launcher icon we see in the app
drawer/home screen of the device, and ic_launcher_round contains graphics for
devices that use round icons. Double-click on one of the .png files from each folder to
have a look. I have Photoshopped one of each side by side in this next screenshot to aid
our discussion:

Telegram Channel @IRFaraExam

Exploring the file and folder structure of the Empty Activity project template 75

Figure 3.10 – Launcher icons

You are probably also wondering why there are five ic_launcher….png files in each
folder. The reason for this is it is good practice to provide icons suitably scaled for different
screen sizes and resolutions. By providing an image with the hdpi, mdpi, xhdpi,
xxhdpi, and xxxhdpi qualifications, this allows different Android devices to choose an
icon that will look best for the user.

Note
The letters dpi stand for dots per inch, and the h, m, xh, xxh, and xxxh
prefixes stand for high, medium, extra high, extra extra high, and so on. These
are known as qualifiers, and we will see as we progress that Android has lots of
qualifiers that help us build our apps to suit the wide range of different Android
devices.

The final conundrum of the mipmap folder is that there is also an XML file in each of
the two sub-folders. Open one of them up and you will see that they refer to the ic_
launcher_foreground and ic_launcher_background files that we looked at in
the drawable folder. This tells the Android device where to get details of the adaptive
icons. These files are not required but they make the icons look better, as well as adding
flexibility to their appearance.

We have one more folder and all its files, and then we will understand the structure of an
Android app well.

The res/values folder
Open the res/values folder to reveal three files that we will talk about briefly in turn.
All these files interlink/refer to each other and/or other files that we have seen already.

Telegram Channel @IRFaraExam

76 Exploring Android Studio and the Project Structure

For the sake of completeness, here is a screenshot of the three files in the
res/values folder:

Figure 3.11 – res/values folder

Note
There is also a themes folder inside the values folder, but we do not need
to explore this in the context of this book.

The key to understanding is not in memorizing the connections, and certainly not trying
to memorize or even understand the code in the files, but rather to get an appreciation of
the interlinked nature of all the files and code we have seen so far.

Let's glance inside the files one at a time.

The colors.xml file

We'll look next at the contents of the colors.xml file, as follows:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <color name="colorPrimary">#6200EE</color>

 <color name="colorPrimaryDark">#3700B3</color>

 <color name="colorAccent">#03DAC5</color>

</resources>

Notice that the starting and closing tags take the usual pattern we have come to expect
from XML files. There is an opening <resources> tag and a closing </resources>
tag. As children of resources, there are three pairs of <color> … </color> tags.

Within each color tag is a name attribute and curious-looking code, consisting of
numbers and letters. The name attribute is the name of a color. We will see in another of
the files that follow that various names are referred to.

Telegram Channel @IRFaraExam

Exploring the file and folder structure of the Empty Activity project template 77

The code is what defines an actual color itself. Therefore, when the name is referred to,
the color defined by the related code is what is produced on the screen. We will see where
these names are referred to in a moment.

Note
The code is called hexadecimal code because in each position of the code, the
values 0 through 9 and a through f can be used, giving 16 possible values. If
you want to find out more and play around with hex colors, visit http://
www.color-hex.com/color-wheel/. If you are intrigued about
number bases such as hexadecimal (base 16), binary (base 2), and others,
then look at the following article that explains them and talks about why
humans typically use base 10: https://betterexplained.com/
articles/numbers-and-bases/. You do not need to explore these
articles to proceed with the book.

The strings.xml file

Most modern apps are made for as wide an audience as possible. Furthermore, if an app is
of a significant size or complexity, then roles in a software company are often divided up
into many different teams—for example, the person writing the Java code for an Android
app very possibly had little to do with designing the layout of the UI.

By separating the content of the app from the programming of the app it is easier to make
changes at any time, and it is also possible to create content for multiple different spoken
languages without altering the Java code for each.

Look at the content of the strings.xml file, reproduced next:

<resources>

 <string name="app_name">Empty Activity App</string>

</resources>

We can see that within the now-familiar <resources>…</resources> tags, we have
a <string>…</string> tag. Within the string tag, there is an attribute called name
with an app_name value, and then a further value of Empty Activity App.

Let's look at one more line from the AndroidManifest.xml file we explored earlier in
the The manifests folder section. The line in question follows next, but refer to the file itself
in Android Studio if you want to see the line in its full context:

android:label="@string/app_name"

Telegram Channel @IRFaraExam

http://www.color-hex.com/color-wheel/
http://www.color-hex.com/color-wheel/
https://betterexplained.com/articles/numbers-and-bases/
https://betterexplained.com/articles/numbers-and-bases/

78 Exploring Android Studio and the Project Structure

The android:label attribute is being assigned a value of @string/app_name. In
Android, @string refers to all the strings in the strings.xml file. In this specific app,
the string attribute with the app_name label has an Empty Activity App value.

Therefore, the line of code in the AndroidManifest.xml file shown previously has the
following effect on the screen when the app is running:

Figure 3.12 – AndroidManifest.xml file effect

Although at first this system might seem convoluted, in practice it separates design and
content from the coding, which is very efficient to do. If the designers of an app want to
change its name, they simply edit the strings.xml file, with no need to interact with
the Java programmers; and if all text in an app is provided as a string resource, then all of
it can be easily altered and adapted as the project proceeds.

Android takes this flexibility further by allowing developers to use different files for string
resources for each language/locale. This means that a developer can cater to a planet full
of happy users with exactly the same Java code. A Java programmer just needs to refer to
the name attribute of a string resource instead of hardcoding the text itself into the Java,
and then other departments can design the text content and handle tasks such as language
translation. We will make an app multilingual in Chapter 18, Localization.

Note
It is possible to hardcode the actual text directly into the Java code instead
of using string resources, and from time to time we will do so for the sake of
easily showing some Java without getting bogged down with editing or adding
to the strings.xml file. We did this in the previous chapter when we made
toast messages and output text to the console.

Telegram Channel @IRFaraExam

Exploring the file and folder structure of the Basic Activity project template 79

The Android system allows designers to choose a selection of colors, text, images, sound,
and other resources as well, and easily produce a variation of their app for different
regions of the world.

For example, in Western culture, green can represent themes such as nature and
correctness; and in many Middle Eastern countries, green represents fertility and is the
color associated with Islam. While you might just about get away with distributing green
in both these regions, your app will be perceived very differently.

If you then roll your app out into Indonesia, green is culturally despised among many
(although not all) Indonesians. Next, you launch in China, and green has potential
negative connotations to do with unfaithful spouses. It is a minefield that a typical Java
programmer will never learn to navigate—and fortunately, because of the way we can
divide up responsibilities in Android Studio, they don't need to learn about this.

Colors—and, therefore, styles and themes—is a very specialized topic. While we won't be
exploring any more deeply than that quick foray into green, hopefully you see the benefit
of a system that separates responsibility for programming, layout, color, and textual
content.

It is also worth mentioning that it is entirely possible to produce a fantastic app that is
enjoyed by thousands—or even millions—of users without catering individually to every
region. However, even if we are not going to employ teams of designers, translators, and
cultural experts, we still must work within this system that was designed to enable them,
and that is why we are going into such depth.

At this stage, we have a good grasp of what goes into an Android project and how the
different aspects link together. Let's build one more app, not to go into it in the same detail
but to see the differences that different app templates make to the underlying files that
Android Studio generates.

Exploring the file and folder structure of the
Basic Activity project template
The next-simplest project type with an autogenerated UI is a Basic Activity project. This
is the same type of project that we created in Chapter 1, Beginning Android and Java. Feel
free to open that project up now, but it is just as quick to generate a new one, and we can
then also examine it without any of our alterations and additions clouding the discussions.

Telegram Channel @IRFaraExam

80 Exploring Android Studio and the Project Structure

Proceed as follows:

1. Run Android Studio and left-click the Start a new Android Studio project option.

2. The window that follows is the Select a Project Template window. Select Basic
Activity and click Next.

3. In the Configure Your Project window, set up the project as follows:

4. Click the Finish button, and we will run the app to see what we have achieved.

Now, we can dig into the files. We won't look at everything in the same detail that we did
for the Empty Activity project; instead, we will just look at the interconnectedness of the
files and make a few comparisons.

Exploring a Basic Activity project
Let's look at the Java code first in the MainActivity.java tab in the code editor. As
already stated, a Basic Activity project has more to it than an Empty Activity project.

Note
You can open as many instances of Android Studio as you like. If you want to
compare projects side by side, select File | Open then choose the project, and
when prompted select New Window to open the project, without closing any
projects that are already open.

The first thing to note is that there is some extra code in the onCreate method.

Telegram Channel @IRFaraExam

Exploring a Basic Activity project 81

The MainActivity.java file
I mentioned very briefly back in Chapter 2, First Contact: Java, XML, and the UI Designer,
these interconnections in the Java code and the XML code. Let's look through the resource
files and point out the XML files that this Java code points to.

Here is the Java code shown next. I have slightly reformatted it to make it more readable
in a book:

Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);

setSupportActionBar(toolbar);

FloatingActionButton fab = findViewById(R.id.fab);

fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Snackbar.make(view, "Replace with your own

 action", Snackbar.LENGTH_LONG)

 .setAction("Action", null).show();

 }

});

To understand this code fully will take quite a few more chapters, but to point out where
this code uses files in the resources will only take a moment and will then leave us even
more aware of the components that make up our projects.

The code refers to two resources. The first is a Toolbar resource and is referred to via
R.id.toolbar. The second is a FloatingActionBar resource and refers to the XML
files we will see soon via R.id.fab.

Telegram Channel @IRFaraExam

82 Exploring Android Studio and the Project Structure

If we open the res/layout folder and the java folder in the project window, we
can see that things look different from how they did in the Empty Activity project, as
illustrated in the following screenshot:

Figure 3.13 – res/layout folder and java folder

There are now three Java files that were autogenerated, and four XML layout files that
were autogenerated.

Remember that this app has two screens—a first screen with a Hello first fragment
message and a Next button; and a second screen, which simply had a Previous button.

Telegram Channel @IRFaraExam

Exploring a Basic Activity project 83

What is happening is that Android Studio is not only providing separate layout files for
the appearance of each screen, but it is also providing separate Java files for the code that
controls each screen. If you take what I just said at face value, you would, therefore, expect
two layout files and two Java files, but we have more.

As we already know, when the app is run by the user, the onCreate method of the
MainActivity.java file is executed. This sets up the app, including the layout. The
layout is in activity_main.xml but this file no longer controls the layout of the two
main screens. It has elements that are consistent between both screens and delegates
the layout to content_main.xml. The content_main.xml file then defines an
area of the screen that it occupies and delegates the details that will appear in this area
to yet another file, the nav_graph.xml file in the res/navigation folder. This
nav_graph.xml file then determines which layout to use (fragment_first.xml
or fragment_second.xml) and which corresponding Java file will control the layout
(FirstFragment.java or SecondFragment.java).

At this stage, the apparent convolution might be overwhelming. It is my guess that this
is one of the things could make learning Android development without any previous
development experience so challenging. But the good news is this:

• We don't need to remember and understand the details of all this
interconnectedness.

• We can build loads of apps without using any of it.

• As we progress through the book and work with the different pieces of this puzzle,
we will become familiar with them a piece at a time.

Telegram Channel @IRFaraExam

84 Exploring Android Studio and the Project Structure

Take a look at this next figure, which shows how the Basic Activity template app works:

Figure 3.14 – Basic Activity template

Telegram Channel @IRFaraExam

Exploring a Basic Activity project 85

If the apparent complexity seems frustrating, then understanding why it is done like this
might help. We have already talked about separating layouts from programming and
further separating out text and graphics, to allow different teams to work on different
aspects of an app. Well, now, we can further separate out not just navigation between
different screens of our app—say, the main menu screen, the settings screen, and some
other screen—but as the layouts and programming associated with each of these screens
are separate, they too can be worked on simultaneously by separate teams. More on this as
we progress through the chapters.

We will look into coding separate fragment layouts and separate Java code that controls
each of them, as well as learning more about why we want to do it like this, from Chapter
24, Design Patterns, Multiple Layouts, and Fragments, onward, and we will be digging
deeper into interconnected layout files such as activity_main.xml and content_
main.xml in the next chapter.

For now, let's look a little deeper at how the MainActivity.java file code links up
with the activity_main.xml layout. We will see that although the activity_
main.xml file is responsible for placing the toolbar and the floating action button, the
MainActivity.java file is responsible for controlling what happens when the user
interacts with them.

The activity_main.xml file
For now, open up the activity_main.xml file, and you will see that there are some
elements to represent both toolbar and fab. The Java code referring to these elements
is setting up the toolbar and the floating action bar ready for use. The XML code, as we
have come to expect, describes what they look like.

Here is the XML code for the toolbar:

<androidx.appcompat.widget.Toolbar

 android:id="@+id/toolbar"

 android:layout_width="match_parent"

 android:layout_height="?attr/actionBarSize"

 android:background="?attr/colorPrimary"

 app:popupTheme="@style/AppTheme.PopupOverlay" />

Telegram Channel @IRFaraExam

86 Exploring Android Studio and the Project Structure

Notice that it refers to a toolbar, a color, and a style, as well as some other aspects.

For clarity, this is the toolbar in the actual working app:

Figure 3.15 – Toolbar of the app

Here is the XML code for the floating action button. I have slightly reformatted the first
line of the code onto two lines so that it displays better in the printed version of this book:

<com.google.android.material.floatingactionbutton.

FloatingActionButton

 android:id="@+id/fab"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="bottom|end"

 android:layout_margin="@dimen/fab_margin"

 app:srcCompat="@android:drawable/ic_dialog_email" />

Notice it has an id value of fab. It is through this id value that we gain access to the
floating action button in our Java code—specifically, this line in MainActivity.java:

FloatingActionButton fab = findViewById(R.id.fab);

After this line of code executes, the fab object in our Java code can now directly control
the floating action button and all its attributes. In Chapter 13, Anonymous Classes –
Bringing Android Widgets to Life, we will learn how to do this in detail.

Telegram Channel @IRFaraExam

Exploring a Basic Activity project 87

Here is the floating action button in the actual app:

Figure 3.16 – Floating action button

I haven't explained the code in detail, as there is no point at this stage. Just start to make
a mental note of the interconnections, outlined here:

• XML files can refer to other XML files.

• Java can refer to XML files (and, as we will see soon, other Java files).

• And now, we have seen that in Java we can grab control of a specific part of the UI
in an XML file via its id attribute.

We have seen enough from this file, so let's move on and dip into the remaining files.

The extra methods in MainActivity.java
So, what do the methods do and when are they called, and by whom? The next difference
is this extra method (again, slightly reformatted for presentation):

@Override

public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the

 // action bar if it is present.

 getMenuInflater().inflate(R.menu.menu_main, menu);

 return true;

}

This code prepares (inflates) the menu that is defined in the menu_main.xml file,
and just as with the onCreate method, the onCreateOptionsMenu method is an
overridden method and is called by the operating system directly.

Telegram Channel @IRFaraExam

88 Exploring Android Studio and the Project Structure

Then, there is yet another method, shown next:

@Override

public boolean onOptionsItemSelected(MenuItem item) {

 // Handle action bar item clicks here. The action bar

 will

 // automatically handle clicks on the Home/Up button, so

 long

 // as you specify a parent activity in

 AndroidManifest.xml.

 int id = item.getItemId();

 //noinspection SimplifiableIfStatement

 if (id == R.id.action_settings) {

 return true;

 }

 return super.onOptionsItemSelected(item);

}

This method is overridden as well, and it too is called directly by the operating system. It
handles what happens when an item (option) from the menu is selected by a user. At the
moment, it handles just one option—the settings option—and currently, it takes no action,
as can be seen here:

The code if (id == R.id.action_settings) {

This determines whether any options from the Settings menu were clicked, and if they
were, the return true code executes, and control is returned to whatever part of the
app was executing before it was interrupted by a user clicking the Settings menu option.

We know nearly enough for now. Don't worry about memorizing all these connections.
We will be coming back to each connection, investigating more deeply, and cementing our
understanding of each.

Now, we can take a closer look at the Android emulator.

Telegram Channel @IRFaraExam

Exploring the Android emulator 89

Exploring the Android emulator
As we progress, it helps to be familiar with exactly how to use the Android emulator. If
you haven't used the latest version of Android, some of the ways even simple tasks are
executed (such as viewing all the apps) can be different from how your current device
works. In addition, we want to know how to use the extra controls that come with all
emulators.

Emulator control panel
You probably noticed the mini control panel that appears beside the emulator when you
run it. Let's go through some of the most useful controls. Look at this screenshot of the
emulator control panel. I have annotated it to aid discussion of it:

Figure 3.17 – Emulator control panel

I will just mention the more obvious controls as follows, and go into a bit more depth
when necessary:

1. These are the window controls. Minimize or close the emulator window.

2. From top to bottom, power off the emulator, simulating powering off the actual
device. The next two icons raise and lower the volume.

Telegram Channel @IRFaraExam

90 Exploring Android Studio and the Project Structure

3. These two buttons allow you to rotate the emulator left and right. This means
you can test what your app looks like in all orientations, as well as how it handles
orientation changes while the app is running. The icons immediately below these
take a screenshot and zoom in, respectively.

4. These icons simulate the back button and home button, and viewing running apps.
Have a play with these buttons as we will need to use them from time to time,
including in Chapter 6, The Android Lifecycle.

5. Press this button to launch the Advanced Settings menu, where you can interact
with things such as sensors, the Global Positioning System (GPS), the battery, the
fingerprint reader, and more. Have a play around with some of these settings if you
are curious.

Let's have a play with the emulator itself.

Using the emulator as a real device
The emulator can emulate every feature of a real phone, so it would be possible to write a
whole book on using it. If you want to write apps that your users love, then understanding
a whole range of Android devices is well worth taking the time to do. I just want to point
out a few of the most basic features here, because without these basic interactions it will
be hard to follow along with the book. Furthermore, if you have an older Android device,
then some essential basics (such as accessing the app drawer) have changed and you might
be left a little baffled.

Telegram Channel @IRFaraExam

Exploring the Android emulator 91

Accessing the app drawer
Hold the mouse cursor on the bottom of the home screen and drag upward to access the
app drawer (all the apps). The following screenshot shows this action halfway through:

Figure 3.18 – Drag upwards to access app drawer

Now, you can run any app installed on the emulator. Note that when you run one of
your apps through Android Studio, it remains installed on the emulator and is therefore
runnable from the app drawer. However, every change you make to the app in Android
Studio will require you to run/install the app again by clicking the play button on the
Android Studio quick launch bar—as we have been doing.

Telegram Channel @IRFaraExam

92 Exploring Android Studio and the Project Structure

Viewing active apps and switching between apps
To view active apps, you can use the emulator control panel, the square labeled as number
4 on the screenshot of the emulator control panel (Figure 3.17). To access the same option
using the phone screen (as you would have to do on a real device), swipe up, just as when
accessing the app drawer, but do so only for about one quarter the length of the screen.
This process is illustrated in the following screenshot:

Figure 3.19 – Swipe up

You can now swipe left and right through recent apps, swipe an app up to close it, or tap
the back button to return to what you were doing before you viewed this option. Do try
this out as we will use these basic features quite often.

Telegram Channel @IRFaraExam

Summary 93

Summary
Remember that the goal of this chapter was familiarization with the system/structure of
Android/an Android project? Android projects are a sometimes-complex interweaving
of Java and a multitude of resource files. Resource files can contain XML to describe our
layouts, textual content, styles, and colors, as well as images. Resources can be produced to
target different languages and regions of the world. Other resource types that we will see
and use throughout the book include themes and sound effects.

It is not important to remember all the different ways in which different resource files and
Java files are interconnected. It is only important to realize that they are, and be able to
examine files of various types and realize when they are dependent on code in another file.
Whenever we create connections from our Java code to the XML code, I will always point
out details of the connection again.

We do not need to learn XML as well as Java, but we will become a little bit familiar with
it. Java will be the focus of this book but our Java will frequently refer to the XML code, so
understanding and having seen some examples of the interconnections will stand you in
good stead to make faster progress.

We have also explored the emulator to get the most out of it when testing our apps.

In the next chapter, we will build two custom layouts using two different Android layout
schemes. We will also write some Java code so that we can switch between them with the
tap of a button.

Telegram Channel @IRFaraExam

Telegram Channel @IRFaraExam

4
Getting Started

with Layouts and
Material Design

We have already seen the Android Studio user interface (UI) designer, as well as Java, in
action. In this hands-on chapter, we will build three more layouts—still quite simple, yet a
step up from what we have done so far.

Before we get to the hands-on part, we will have a quick introduction to the concept of
Material Design.

We will see another type of layout called LinearLayout, and step through using it to
create a usable UI. We will take things a step further using ConstraintLayout, both
with understanding constraints and with designing more complex and precise UI designs.
Finally, we will meet TableLayout, for laying out data in an easily readable table.

We will also write some Java code to switch between different layouts within our app/
project. This is the first major app that links together multiple topics into one neat parcel.
The app is called Exploring Layouts.

Telegram Channel @IRFaraExam

96 Getting Started with Layouts and Material Design

In this chapter, we will look at the following topics:

• Finding out about Material Design

• Exploring Android UI design

• Introducing layouts

• Building a LinearLayout and learning when it is best to use this type of layout

• Building another, slightly more advanced ConstraintLayout and finding out a
bit more about using constraints

• Building a TableLayout and filling it with data to display

• Linking everything together in one app called Exploring Layouts

First on the list is Material Design.

Technical requirements
You can find the code present in this chapter on GitHub at https://github.com/
PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2004.

Finding out about Material Design
You might have heard of Material Design, but what exactly is it? The objective of Material
Design is quite simple—to create beautiful UIs. It is also, however, about making these UIs
consistent across Android devices. Material Design is not a new idea; it is taken straight
from the design principles used in pen-and-paper design, such as having visually pleasing
embellishments through shadows and depth.

Material Design uses the concept of layers of materials, which you can think of in the
same way you would think of layers in a photo-editing app. Consistency is achieved with a
set of principles, rules, and guidelines. It must be stressed that Material Design is entirely
optional, but it also must be stressed that Material Design works—and if you are not
following it, there is a good chance your design will be less appreciated by the user. The
user has after all become used to a certain type of UI, and that UI was most likely created
using Material Design principles.

Material Design is a sensible standard to strive for, but while we are learning the details of
it, we mustn't let that hold us back from learning how to get started with Android.

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2004
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2004
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2004

Exploring Android UI design 97

This book will focus on getting things done, while occasionally pointing out when
Material Design has influenced the design, how it has influenced the design, and further
resources for those who want to look at Material Design in more depth.

Exploring Android UI design
We will see with Android UI design that so much of what we learn is context-sensitive.
The way that a given widget's x attribute will influence its appearance might depend on
a widget's y attribute or even on an attribute on another widget. It isn't easy to learn this
verbatim. It is best to expect to gradually get better and faster results with practice.

For example, if you play with the designer by dragging and dropping widgets onto the
design, the Extensible Markup Language (XML) code that is generated will vary quite
considerably, depending upon which layout type you are using. We will see this as we go
ahead throughout this chapter.

This is because different layout types use different means to decide the position of their
children—for example, the LinearLayout we will explore next works very differently
from the ConstraintLayout that was added by default to our project in Chapter 1,
Beginning Android and Java.

This information might initially seem to be a problem, or even a bad idea, and it
certainly is a little awkward at first. What we will grow to learn, however, is that this clear
abundance of layout options and their individual quirks is a good thing because they give
us almost unlimited design potential. There are very few layouts you can imagine that are
not possible to achieve.

This almost unlimited potential comes with a bit of complexity, however. The best way to
start to get to grips with this is to build some working examples of several types. In this
chapter, we will see three types of layouts, outlined as follows:

• LinearLayout

• ConstraintLayout

• TableLayout

We will see how to make things easier using the distinctive features of the visual designer,
and we will also pay some attention to the XML that is autogenerated, to make our
understanding more rounded.

Telegram Channel @IRFaraExam

98 Getting Started with Layouts and Material Design

Introducing layouts
We have already seen ConstraintLayout in Chapter 1, Beginning Android and Java,
but there are more layouts than this. Layouts are the building blocks that group together
the other UI elements. Layouts can also contain other layouts.

Let's look at some commonly used layouts in Android, because knowing the different
layouts and their pros and cons will make us more aware of what can be achieved and will
therefore expand our horizons in terms of what is possible.

We have already seen that once we have designed a layout, we can put it into action with
the setContentView method in our Java code.

Let's build three designs with different layout types, and then put setContentView to
work and switch between them.

Creating and exploring a layout project
One of the toughest things in Android is not just finding out how to do something but
finding out how to do something in a particular context. That is why throughout this book,
as well as showing you how to do some neat stuff, we will link lots of topics together into
apps that span multiple topics and, often, chapters. The Exploring Layouts project is the
first app of this type. We will learn how to build multiple types of layout while linking
them all together in one handy app.

Let's get started, as follows:

1. Create a new project in Android Studio. If you already have a project open, select
File | New Project. When prompted, choose Open in same window as we do not
need to refer to our previous project.

Important note
If you are on the start screen of Android Studio, you can create a new project
simply by clicking the Create new project option.

2. Make sure to select the Empty Activity project template, as we will build most of
the UI from scratch. Click the Next button.

3. Enter Exploring Layouts for the application name and then click the Finish
button.

Telegram Channel @IRFaraExam

Introducing layouts 99

Look at the MainActivity.java file. Here is the code, excluding the import…
statements:

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

}

Locate the call to the setContentView method and delete the entire line. The line is
shown highlighted in the previous code snippet.

This is just what we want because now, we can build our very own layouts, explore the
underlying XML, and write our own Java code to display these layouts. If you run the app
now, you will just get a blank screen with a title; not even a Hello World! message.

The first type of layout we will explore is the LinearLayout type.

Building a layout with LinearLayout
LinearLayout is probably the simplest layout that Android offers. As the name hints
at, all the UI items within it are laid out linearly. You have just two choices: vertical and
horizontal. By adding the following line of code (or editing via the Attribute window) you
can configure a LinearLayout to lay things out vertically:

android:orientation="vertical"

You can then (as you could probably have guessed) change "vertical" to
"horizontal" to lay things out horizontally.

Before we can do anything with LinearLayout, we need to add one to a layout file; and
as we are building three layouts in this project, we also need a new layout file.

Telegram Channel @IRFaraExam

100 Getting Started with Layouts and Material Design

Adding a LinearLayout layout type to a project
In the project window, expand the res folder. Now, right-click the layout folder and
select New. Notice there is an option for Layout resource file, as shown in the following
screenshot:

Figure 4.1 – Adding LinearLayout to project

Select Layout resource file and you will see the New Resource File dialog window. In the
Root element: field, enter LinearLayout, as illustrated in the following screenshot:

Figure 4.2 – Creating new resource file

Telegram Channel @IRFaraExam

Introducing layouts 101

In the File name: field, enter main_menu. The name is arbitrary, but this layout is
going to be our main menu that is used to select the other layouts, so the name seems
appropriate.

Click the OK button, and Android Studio will generate a new LinearLayout in an
XML file called main_menu and place it in the layout folder, ready for us to build our
new main menu UI. The new file is automatically opened in the editor, ready for us to get
designing.

Preparing your workspace
Click the Design tab to switch to design view if you are not already in this view. Adjust the
windows by dragging and resizing their borders (as you can in most windowed apps) to
make the palette, design, and attributes as clear as possible but no bigger than necessary.
The following screenshot shows the approximate window proportions I chose to make
designing our UI and exploring the XML as clear as possible. The detail in the screenshot
is not important:

Figure 4.3 – Preparing workspace

Telegram Channel @IRFaraExam

102 Getting Started with Layouts and Material Design

Important note
I have made the project, palette, and attribute windows as narrow as possible
yet without obscuring any content. I have also closed the Build/logcat window
at the bottom of the screen, the result being that I have a nice clear canvas on
which to build the UI.

Examining the generated XML
Click on the Code tab, and we will have a look at the current state of the XML code
that forms our design at this stage. Here is the code so that we can talk about it (I have
reformatted it slightly to make it appear more clearly on the page):

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="match_parent"

 android:layout_height="match_parent">

</LinearLayout>

We have the usual starting and closing tags and, as we could have predicted, they are
called <LinearLayout and </LinearLayout>. There is no child element yet,
but there are three attributes. We know they are attributes and not children of the
LinearLayout because they appear before the first closing >. The three attributes that
define this LinearLayout have been highlighted in the previous code for clarity.

The first attribute is android:orientation, or—more succinctly—we will just refer
to the attributes without the android: part. The orientation attribute has a value of
vertical. This means that when we start to add items to this layout, it will arrange them
vertically from top to bottom. We could change the vertical value to horizontal,
and it would lay things out from left to right.

The next two attributes are layout_width and layout_height. These determine the
size of the LinearLayout. The value given to both attributes is match_parent. The
parent of a layout is the entire available space. By matching the parent horizontally and
vertically, the layout will fill the entire space available.

Telegram Channel @IRFaraExam

Introducing layouts 103

Adding a TextView to the UI
Switch back to the Design tab, and we will add some elements to the UI.

First, find the TextView widget in the palette. This can be found in both the Common
and Text categories. Left-click and drag the TextView onto the UI, and notice that it sits
neatly at the top of the LinearLayout.

Look at the XML on the Code tab and confirm that it is a child of the LinearLayout
and that it is indented by one tab to make this clear. Here is the code for the TextView
widget, without the surrounding code for the LinearLayout:

<TextView

 android:id="@+id/textView"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="TextView" />

Notice it has four attributes: an id attribute, in case we need to refer to it from another
UI element or from our Java code; a layout_width attribute set to match_parent,
which means the TextView stretches across the whole width of the LinearLayout;
and a layout_height attribute set to wrap_content, which means the TextView
is precisely tall enough to contain the text within it. Finally, for now, it has a text
element, which determines the actual text it will display, and this is currently set to just
"TextView".

Switch back to the Design tab, and we will make some changes.

Telegram Channel @IRFaraExam

104 Getting Started with Layouts and Material Design

We want this text to be the heading text of this screen, which is the menu screen. In the
Attributes window, click the search icon and type text into the search box, as shown in
the following screenshot. Find the text attribute and change its value to Menu:

Figure 4.4 – Adding TextView to UI

Tip
You can find any attribute by searching or just by scrolling through the options.
When you have found the attribute you want to edit, left-click it to select it and
then press the Enter key on the keyboard to make it editable.

Next, find the textSize attribute using your preferred search technique, and set
textSize to 50sp. When you have entered this new value, the text size will increase.

Important note
The sp value stands for scalable pixels. This means that when the user changes
the font-size settings on their Android device, the font will dynamically rescale
itself.

Now, search for the gravity attribute and expand the options by clicking the little arrow
indicated in the following screenshot:

Telegram Channel @IRFaraExam

Introducing layouts 105

Figure 4.5 – Expanding gravity attribute

Add center_horizontal to the gravity by setting that value to true, as illustrated in
the following screenshot:

Figure 4.6 – Adding center_horizontal to gravity by setting the value to true

The gravity attribute refers to the gravity within the TextView itself, and our change
has the effect of moving the actual text inside the TextView to the center.

Telegram Channel @IRFaraExam

106 Getting Started with Layouts and Material Design

Important note
The gravity attribute is different from the layout_gravity attribute.
The layout_gravity attribute sets the gravity within the layout—in this
case, the parent LinearLayout. We will use layout_gravity later in
this project.

At this point, we have changed the text of the TextView widget, increased its size, and
centered it horizontally. The UI designer should now look like this:

Figure 4.7 – Adjusting textView on the UI

A quick glance at the Code tab to see the XML would reveal the following code:

<TextView

 android:id="@+id/textView"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:gravity="center_horizontal"

 android:text="Menu"

 android:textSize="50sp" />

You can see the new attributes as follows: gravity, which is set to center_
horizontal; text, which has been changed to Menu; and textSize, which is set to
50sp.

If you run the app, you might not see what you expected. This is because we haven't called
the setContentView method in our Java code to load the UI. You will still see the
blank UI. We will fix this once we have made a bit more progress with our design.

Adding a multiline TextView to the UI
Switch back to the Design tab and find Multiline Text from the Text category of the
palette, and drag it onto the design just below the TextView widget we added a moment
ago.

Telegram Channel @IRFaraExam

Introducing layouts 107

Using your preferred search technique, set the text attribute to the following: Select
a layout type to view an example. The onClick attribute of
each button will call a method which executes setContentView
to load the new layout.

Now, your layout will look like this:

Figure 4.8 – Multiline textView added to UI

Your XML will be updated with another child in the LinearLayout (after the
TextView) that looks like this (I have slightly reformatted it for presenting it on the
page):

<EditText

 android:id="@+id/editTextTextMultiLine"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:ems="10"

 android:gravity="start|top"

 android:inputType="textMultiLine"

 android:text="Select a layout type to view an example.

 The onClick attribute of each button will call a

 method which executes setContentView to load the

 new layout" />

You can see the details of the UI item. A look at the XML reveals we have an inputType
attribute, indicating that this text is editable. There is also another attribute that we
haven't seen before, and that is ems. The ems attribute controls how many characters
can be entered per line, and the value of 10 was chosen automatically by Android Studio.
However, another attribute, layout_width="match_parent", overrides this value
because it causes the element to expand to fit its parent— that is, the whole width of the
screen.

Telegram Channel @IRFaraExam

108 Getting Started with Layouts and Material Design

When you run the app in the next section, you will see the text is indeed editable,
although for the purposes of this demo app it serves no practical purpose.

Wiring up the UI with the Java code (Part 1)
To achieve an interactive app, we will do the following three things:

1. We will call the setContentView method from the onCreate method to show
the progress of our UI when we run the app.

2. We will write two more methods of our own, and each one will call the
setContentView method on a different layout (that we have yet to design).

3. Then, later in this chapter when we design two more UI layouts, we will be able to
load them at the click of a button.

As we will be building a ConstraintLayout and a TableLayout, we will call our
new methods loadConstraintLayout and loadTableLayout, respectively.

Let's do that now, and then we can see how we can add some buttons that call these
methods.

Switch to the MainActivity.java file, then inside the onCreate method add the
following highlighted code:

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main_menu);

}

The code uses the setContentView method to load the UI we are currently working
on. You can now run the app to see the following result:

Telegram Channel @IRFaraExam

Introducing layouts 109

Figure 4.9 –Exploring Layouts menu

Add these two new methods inside the MainActivity class after the onCreate
method, as follows:

public void loadConstraintLayout(View v){

 setContentView(R.layout.activity_main);

}

public void loadTableLayout(View v){

 setContentView(R.layout.my_table_layout);

}

There is one error with the first method and two errors with the second. The first error we
can fix by adding an import statement so that Android Studio is aware of the View class.
Left-click the word View to select the error. Hold down the Alt key and then tap the Enter
key. You will see the following messages pop up:

Figure 4.10 – Selecting Import class to eliminate the error

Telegram Channel @IRFaraExam

110 Getting Started with Layouts and Material Design

Choose Import class. The error is gone. If you scroll to the top of the code, you will see
that a new line of code has been added by that shortcut we just performed. Here is the
new code:

import android.view.View;

Android Studio knows about the View class and no longer has an error.

The second method still has an error, however. The problem is that the code calls the
setContentView method to load a new UI (R.layout.my_table_layout). As
this UI layout does not exist yet, it produces an error. You can comment out this call to
remove the error until we create the file and design the UI layout later in this chapter. Add
the comment forward slashes (//), as highlighted next:

public void loadConstraintLayout(View v){

 setContentView(R.layout.activity_main);

}

public void loadTableLayout(View v){

 // setContentView(R.layout.my_table_layout);

}

The reason why the loadConstraintLayout method does not have an error is
because that method loads the activity_main.xml layout, which was created by
Android Studio when we generated the project.

Now, we want to add some buttons we can click to call our new methods and load the
new layouts we will be building. But adding a couple of buttons with some text on is too
easy—we have done that before. What we want to do is line up some text with a button to
the right of it. The problem is our LinearLayout has the orientation attribute set
to vertical and, as we have seen, all the new parts we add to the layout will be lined up
vertically.

Adding layouts within layouts
The solution to laying out some elements with a different orientation from others is to nest
layouts within layouts. Here is how to do it.

Telegram Channel @IRFaraExam

Introducing layouts 111

From the Layouts category of the palette, drag a LinearLayout (Horizontal) onto our
design, placing it just below the Multiline Text. Notice in the following screenshot that
there is a blue border occupying all the space below the Multiline Text:

Figure 4.11 – Dragging a LinearLayout (Horizontal) from the Layouts category onto our design and
placing it just below the Multiline Text

This indicates that our new LinearLayout (Horizontal) is filling the space. Keep this blue
border area in mind, as this is where we will put the next item on our UI.

Telegram Channel @IRFaraExam

112 Getting Started with Layouts and Material Design

Now, go back to the Text category of the palette and drag a TextView widget onto
the new LinearLayout we just added. Notice in the following screenshot how the
TextView widget sits snuggly in the top left-hand corner of the new LinearLayout:

Figure 4.12 – Dragging a TextView widget from the Text category of the palette onto the new
LinearLayout

This at first seems no different from what happened with the previous vertical
LinearLayout, which was part of our UI from the start. But watch what happens when
we add our next piece of the UI.

Important note
The term used to refer to adding layouts within layouts is nesting. The Android
term applied to any item that appears on the UI (buttons, text, and so on) is
view, and anything that contains views is a view group. As the terms view
and view group do not always make their meanings clear in certain contexts,
I will usually refer to parts of the UI either specifically (such as TextView,
Button, LinearLayout) or more broadly (UI element, item, or widget).

From the Button category, drag a Button widget onto the right-hand side of the previous
TextView widget. Notice that the button sits to the right of the text, as shown here:

Figure 4.13 – Dragging a Button widget from the Button category onto the right-hand side of the
previous TextView widget

Next, select the LinearLayout (the horizontal one) by clicking on an empty part of
it. Find the layout_height attribute and set it to wrap_content. Notice that the
LinearLayout is now taking up only as much space as it needs, and there is space
below where we can add more widgets. This is shown in the following screenshot:

Telegram Channel @IRFaraExam

Introducing layouts 113

Figure 4.14 – Selecting the LinearLayout (the horizontal one) by clicking on an empty part

Let's configure the text attribute of the TextView widget and the Button widget
before we add the next part of the UI. Change the text attribute of the Button
widget to LOAD. Change the text attribute of our new TextView widget to Load
ConstraintLayout.

This screenshot shows what the layout should look like currently:

Figure 4.15 – Configuring the text attribute of the TextView widget and the Button widget

Tip
Did that work? Yes? Excellent. You are now familiar with editing attributes
of Android views. No? Left-click the item you want to edit (in this case, the
TextView widget), search using the search icon, or scroll to find the attribute
you want to edit in the Attributes window (in this case, the text attribute),
select the attribute, and press Enter to edit it. I can now give more succinct
instructions on how to build future UI projects, and this makes your journey to
becoming an Android Ninja much quicker.

Telegram Channel @IRFaraExam

114 Getting Started with Layouts and Material Design

Now, we can repeat ourselves and add another TextView widget and Button widget
within another LinearLayout (Horizontal), just below the one we have just finished. To
do so, follow these steps in order:

1. Add another LinearLayout (Horizontal) just below the previous one.

2. Add a TextView to the new LinearLayout.

3. Change the text attribute of the TextView to Load TableLayout.

4. Add a Button widget on the right-hand side of the TextView widget.

5. Change the text attribute of the Button widget to LOAD.

6. Resize the LinearLayout by changing the layout_height attribute to wrap_
content.

7. Just for fun and for the sake of exploring the palette a bit more, find the Widgets
category of the palette and drag a RatingBar widget onto the design, just below
the final LinearLayout.

Now, your UI should look like this:

Figure 4.16 – Another TextView widget and Button widget added within another LinearLayout
(Horizontal)

Let's add some visual finishing touches to the layout.

Telegram Channel @IRFaraExam

Introducing layouts 115

Making the layout look pretty
In this section, we will explore some more attributes that control the finer details of our
UI. You have probably noticed the UI looks a bit squashed in some places and wonky and
unsymmetrical in others. As we progress through the book, we will continually add to
our repertoire to improve our layouts, but these short steps will introduce and take care of
some of the basics.

Before you get started with the next steps, consider the following tip.

Tip
When you are configuring the attributes of widgets, you can select multiple
widgets at a time—for example, in Step 3 in the instructions that follow, you
could left-click to select the first TextView widget and then Shift and left-
click to select the second TextView widget. You could then alter attributes
for both simultaneously. This tip will also work for Step 4 with the Button
widgets. It will even work when the widgets are different types, provided you
are only editing attributes that all the selected widgets have. So, in Step 5 that
follows, you can simultaneously select and edit the padding attribute on
both TextView and both Button widgets.

Follow these instructions:

1. Select the Multiline Text widget, and find then expand the padding attribute.
Set the padding option to 15sp. This has made a neat area of space around the
outside of the text.

2. To make a nice space below the Multiline Text widget, find and expand the
Layout_Margin attribute and set bottom to 50sp.

3. On both button-aligned TextView widgets, set the textSize attribute to 20sp;
layout_gravity to center_vertical; the layout_width attribute to
match_parent; and layout_weight to .7.

4. On both buttons, set the weight to .3. Notice how both buttons now take up exactly
.3 of the width and the text takes up .7 of the LinearLayout, making the whole
appearance more pleasing.

5. On both TextView widgets and both Button widgets, select padding then
padding, and set the value to 10dp.

6. On the RatingBar widget, find the Layout_Margin attribute, then set left
and right to 15sp.

Telegram Channel @IRFaraExam

116 Getting Started with Layouts and Material Design

7. Still with the RatingBar widget and the Layout_Margin attribute, change top
to 75sp.

You can now run the app and see our first full layout in all its glory, as illustrated here:

Figure 4.17 – The improved layout

Notice that you can play with the RatingBar widget, although the rating won't persist
when the app is turned off.

Unfortunately, the buttons in our app don't do anything yet. Let's fix that now.

Telegram Channel @IRFaraExam

Building a precise UI with ConstraintLayout 117

Wiring up the UI with Java code (Part 2)
To enable the user to interact with our buttons, follow the next two steps to make the
buttons in the layout call our methods:

1. Select the button next to the Load ConstraintLayout text. Find the onClick
attribute and set it to loadConstraintLayout.

2. Select the button next to the Load TableLayout text. Find the onClick
attribute and set it to loadTableLayout.

Now, the buttons will call the methods, but the code inside the loadTableLayout
method is commented out to avoid errors. Feel free to run the app and check that you can
switch to the ConstraintLayout by clicking the loadConstraintLayout button.
But all the ConstraintLayout currently has is a Hello World! message.

We can now move on to building this ConstraintLayout.

Building a precise UI with ConstraintLayout
Open the ConstraintLayout that was autogenerated when we created the project.
It is probably open already in a tab at the top of the editor. If not, it will be in the res/
layout folder. The filename is activity_main.xml.

Inspect the XML in the Code tab and note that it is empty, apart from a TextView that
says Hello World. Switch back to the Design tab, left-click the TextView to select it,
and tap the Delete key to get rid of it.

Now, we can build ourselves a simple yet intricate UI. The ConstraintLayout is most
useful when you want to position parts of your UI very precisely and/or relative to the
other parts and not just in a linear fashion.

Adding a CalendarView
To get started, look in the Widgets category of the palette and find the CalendarView.
Drag and drop the CalendarView near the top and horizontally central. As you drag the
CalendarView around, notice that it jumps/snaps to some locations.

Telegram Channel @IRFaraExam

118 Getting Started with Layouts and Material Design

Also, notice the subtle visual cues that show when the view is aligned. I have highlighted
the horizontally central visual cue in the following screenshot:

Figure 4.18 – The horizontally central visual cue

Let go when it is horizontally central, as it is in the preceding screenshot. Now, we will
resize it.

Resizing a view in a ConstraintLayout
Left-click and hold one of the corner squares that are revealed when you let go of the
CalendarView, and drag inward to decrease the size of the CalendarView, as
illustrated in the following screenshot:

Telegram Channel @IRFaraExam

Building a precise UI with ConstraintLayout 119

Figure 4.19 – Resizing a view in the ConstaintLayout

Reduce the size by about half and leave the CalendarView near the top and horizontally
central. You might need to reposition the widget a little after you have resized it. The result
should look like this:

Figure 4.20 – Repositioning the widget

Telegram Channel @IRFaraExam

120 Getting Started with Layouts and Material Design

You do not need to place the CalendarView in exactly the same place, as the purpose of
the exercise is to get familiar with the visual cues that inform you where you have placed
it, not to create a replica of my layout.

Using the Component Tree window
Now, look at the Component Tree window, the window to the left of the visual designer
and below the palette. A component tree is a way of visualizing the layout of the XML but
without all the details.

If you don't see this, look for a tab at the bottom of the Palette tab that says Component
Tree vertically. Click on this to open up the Component Tree tab.

In the next screenshot, we can see that the CalendarView is indented to the right of the
ConstraintLayout and is therefore a child. In the next UI we build, we will see that
we sometimes need to take advantage of the Component Tree to build the UI.

For now, I just want you to see there is a warning sign by our CalendarView. I have
highlighted it here:

Figure 4.21 – Warning sign by our CalendarView

The error says This view is not constrained. It only has designtime positions, so it will
jump to (0,0) at runtime unless you add the constraints. Remember when we first added
buttons to the screen in Chapter 2, First Contact: Java, XML, and the UI Designer, they
simply moved off to the top-left corner?

Tip
Run the app now and click on the Load ConstraintLayout button if
you want to be reminded of this problem.

Now, we could fix this by clicking the Infer constraints button that we used in Chapter 2,
First Contact: Java, XML, and the UI Designer. Here it is again as a reminder:

Telegram Channel @IRFaraExam

Building a precise UI with ConstraintLayout 121

Figure 4.22 – Fixing error by clicking the Infer constraints button

But learning to add constraints manually is worthwhile because it offers us more options
and flexibility. Also, as your layouts get more complex, there is always an item or two that
doesn't behave as you want it to, and fixing it manually is nearly always necessary.

Adding constraints manually
Make sure the CalendarView is selected, and notice the four small circles on the top,
bottom, left, and right, as illustrated in the following screenshot:

Figure 4.23 – The four constraint handles

These are the constraint handles. We can click and drag them to anchor them with other
parts of the UI or the sides of the screen. By anchoring the CalendarView with the four
edges of the screen, we can lock it into position when the app is run.

One at a time, click and drag the top handle to the top of the design, the right handle to
the right of the design, the bottom handle to the bottom, and the left handle to the left.
Notice how the CalendarView is jumping around as we're applying these constraints?
That's because the designer is applying the constraints as soon as we put them in, so we
can see exactly how it will look at runtime.

Telegram Channel @IRFaraExam

122 Getting Started with Layouts and Material Design

Notice that the CalendarView is now constrained in the center. Left-click and drag the
CalendarView back to the upper part of the screen, somewhere like the position shown
in the following screenshot. Use the visual cues (also shown in the next screenshot) to
make sure the CalendarView is horizontally central:

Figure 4.24 – Making the CalendarView horizontally central

Telegram Channel @IRFaraExam

Building a precise UI with ConstraintLayout 123

At this stage, you could run the app and the CalendarView would be positioned as just
pictured in the preceding screenshot.

Let's add a couple more items to the UI and see how to constrain them.

Adding and constraining more UI elements
Drag an ImageView from the Widgets category of the palette and position it below and
to the left of the CalendarView. When you place the ImageView, a pop-up window
will prompt you to choose an image. You can choose any image you like, but for the
purposes of seeing another Android Studio feature in action, choose the image from
the top of the list, Avatar, in the Sample data section. Click OK to add the image to the
layout. We will see in the forthcoming Making the text clickable section the effect of adding
an image from the Sample data section has on our project.

Constrain the left-hand side of the ImageView and the bottom of the ImageView to the
left and bottom of the UI respectively. Here is the position you should be in now:

Figure 4.25 – Constraining the left-hand-side and the bottom of the ImageView respectively to the left
and bottom of the UI

Telegram Channel @IRFaraExam

124 Getting Started with Layouts and Material Design

The ImageView is constrained in the bottom-left corner. Now, grab the top constraint
handle on the ImageView and drag it to the bottom constraint handle of the
CalendarView. This is now the current situation:

Figure 4.26 – Edited UI

The ImageView is only constrained horizontally on one side and so is pinned/
constrained to the left. It is constrained vertically and equally between the
CalendarView and the bottom of the UI.

Next, add a TextView to the right of the ImageView. Constrain the right of the
TextView to the right of the UI and constrain the left of the TextView to the right of
the ImageView. Then, constrain the top of the TextView to the top of the ImageView
and constrain the bottom of the TextView to the bottom of the UI. Now, you will be left
with something resembling this:

Telegram Channel @IRFaraExam

Building a precise UI with ConstraintLayout 125

Figure 4.27 – Adding a TextView to the UI

Important note
All the warnings in the Component Tree window about unconstrained
items are gone. There are warnings about hardcoded strings because we
are adding text directly to the layout instead of the strings.xml file,
and a warning about missing the contentDescription attribute.
The contentDescription attribute should be used to add a textual
description so that visually impaired users can get a spoken description
of images in the app. For the sake of making fast progress with the
ConstraintLayout, we will ignore these two warnings. We will look at
adding String resources more correctly in Chapter 18, Localization, and you can
read about accessibility features in Android Studio on the Android Developers
website, at https://developer.android.com/studio/intro/
accessibility.

Telegram Channel @IRFaraExam

https://developer.android.com/studio/intro/accessibility
https://developer.android.com/studio/intro/accessibility

126 Getting Started with Layouts and Material Design

You can move the three UI elements around and line them up neatly, just how you want
them. Notice that when you move the ImageView, the TextView moves with it because
the TextView is constrained to the ImageView. But also notice that you can move the
TextView independently and, wherever you drop it, this represents its new constrained
position relative to the ImageView. Whatever an item is constrained to, its position will
always be relative to that item. And as we have seen, the horizontal and vertical constraints
are distinct from each other. I positioned mine like this:

Figure 4.28 – Positioning the TextView

Telegram Channel @IRFaraExam

Building a precise UI with ConstraintLayout 127

Tip
ConstraintLayout could be considered the default layout type, and
while it is more complex than the other layouts it is the most powerful, as
well as the one that runs the best on our user's device. It is worth spending
time looking at some more tutorials about ConstraintLayout.
Especially look on YouTube, as video is a great way to learn about tweaking
ConstraintLayout. We will return to ConstraintLayout
throughout the book, and you do not need to know any more than we have
covered already to be able to move on.

Making the text clickable
We are nearly done with our ConstraintLayout. We just want to wire up a link back
to the main menu screen. This is a good opportunity to demonstrate that TextView (and
most other UI items) are also clickable. In fact, clickable text is probably more common in
modern Android apps than conventional-looking buttons.

Change the text attribute of the TextView widget to Back to the menu. Now, find
the onClick attribute and enter loadMenuLayout.

Now, add the following method to the MainActivity.java file just after the
loadTableLayout method, as highlighted next:

public void loadTableLayout(View v){

 //setContentView(R.layout.my_table_layout);

}

public void loadMenuLayout(View v){

 setContentView(R.layout.main_menu);

}

Now, whenever the user clicks the Back to the menu text, the loadMenuLayout
method will be called and the setContentView method will load the layout in main_
menu.xml.

Telegram Channel @IRFaraExam

128 Getting Started with Layouts and Material Design

You can run the app and click back and forth between the main menu (LinearLayout)
and the CalendarView widget (ConstraintLayout), but have you noticed that the
image in the following screenshot seems to be missing?

Figure 4.29 – Image missing from the UI

The TextView widget is neatly positioned as if the ImageView widget were there, but
as we can see from the preceding screenshot, the avatar icon that is visible in Android
Studio is absent. The reason for this is because we chose the image from the sample data
category. Android Studio allows us to use sample data so that we can get on with the job
of laying out our apps before the images are available. This is useful because it is quite
common that images will need to be produced/sourced throughout the development life
cycle of an app.

To solve this missing image problem, we can simply find the srcCompat attribute in the
Attributes window, left-click it, and choose any image that is not from the Sample
data category. I chose sym_def_app_icon, which is the cool Android icon shown next:

Figure 4.30 – Adding an icon from the srcCompat attribute

Let's build the final layout for this chapter.

Laying out data with TableLayout
Now, we will build a layout that resembles a spreadsheet. It will have neatly aligned cells
with titles and data. In a real-world app, you would most likely use real live data from the
user. As we are just practicing with different layouts, we will not go to this extent.

Follow these steps:

1. In the project window, expand the res folder. Now, right-click the layout folder
and select New. Notice that there is an option for Layout resource file.

Telegram Channel @IRFaraExam

Laying out data with TableLayout 129

2. Select Layout resource file, and you will see the New Resource File dialog window.

3. In the File name: field, enter my_table_layout. This is the same name we used
in the call to setContentView within the loadTableLayout method.

4. Notice in the Root element: field that it has selected by default …ConstraintLayout
as the option. Delete …ConstraintLayout and type TableLayout.

5. Click the OK button, and Android Studio will generate a new TableLayout in an
XML file called my_table_layout and place it in the layout folder, ready for
us to build our new table-based UI. Android Studio will also open the UI designer
(if it isn't already open) with the palette on the left and the Attributes window on
the right.

6. You can now uncomment the loadTableLayout method in the
MainActivity.java file, as follows:

void loadTableLayout(View v){

 setContentView(R.layout.my_table_layout);

}

You can now switch to the screen with the new TableLayout widget when you run the
app, although at the moment it is blank and there is no way of switching back to the main
menu screen; therefore, you will have to quit the app.

Adding a TableRow element to TableLayout
Drag a TableRow element from the Layouts category on to the UI design. Notice that
the appearance of this new TableRow element is virtually imperceptible, so much so that
it is not worth putting a screenshot of it in the book. There is just a thin blue line at the top
of the UI. This is because the TableRow element has collapsed itself around its contents,
which are currently empty.

It is possible to drag and drop our chosen UI elements onto this thin blue line,
but it is also a little awkward, even counterintuitive. Furthermore, once we have
multiple TableRow elements next to each other, it gets even harder. The solution
lies in the Component Tree window, which we introduced briefly when building the
ConstraintLayout.

Telegram Channel @IRFaraExam

130 Getting Started with Layouts and Material Design

Using the Component Tree for when the visual designer won't do
Look at the Component Tree and notice you can see the TableRow as a child of the
TableLayout. We can drag our new UI widgets directly onto the TableRow in the
Component Tree. Drag three TextView widgets onto the TableRow in the Component
Tree, and that should leave you with the following layout. I have Photoshopped the next
screenshot to show you the Component Tree and the regular UI designer at the
same time:

Figure 4.31 – Dragging three TextView widgets onto the TableRow element in the Component Tree

Now, add another two TableRow widgets (from the Layouts category). You can add
them via the Component Tree window or the main UI designer.

Tip
You need to drop the widgets on the far left of the window, otherwise the new
TableRow will become a child of the previous TableRow. This would leave
the whole table in a bit of a muddle. If you accidentally add a TableRow
as a child of the previous TableRow, you can either select it then tap the
Delete key, use the Ctrl + z keyboard combination to undo it, or drag the
mispositioned TableRow to the left (in the Component Tree) to make it a
direct child of the Table (instead of TableRow).

Telegram Channel @IRFaraExam

Laying out data with TableLayout 131

Now, add three TextView widgets to each of the new TableRow elements. This will be
most easily achieved by adding them via the Component Tree window. Check your layout
to make sure it is like this:

Figure 4.32 – Adding three TextView widgets to each of the new TableRow elements

Let's make the table look more like a genuine table of data you might get in an app by
changing some attributes.

On the TableLayout, set the layout_width and layout_height attributes to
wrap_content. This gets rid of extra cells

Change all the outer (along the top and down the left-hand side) TextView widgets
to black by editing the textColor attribute. You can achieve this by selecting the first
TextView, searching for its color attribute, and then starting to type black into the
color attribute values field. You will then be able to select @android:color/black
from a drop-down list. Do this for each of the outer TextView widgets.

Tip
Remember you can select multiple widgets at the same time by holding the
Shift key and left-clicking each required widget in turn.

Find the padding category for all the TextView widgets, and change the padding
attribute to 10sp.

Telegram Channel @IRFaraExam

132 Getting Started with Layouts and Material Design

This next screenshot shows what the table looks like in Android Studio at this stage:

Figure 4.33 – The table in Android Studio

Let's add some finishing touches to the table.

Organizing the table columns
It might seem at this point that we are done, but we need to organize the data better. Our
table, as with many tables, will have a blank cell in the top left to divide the column and
row titles. To achieve this, we need to number all the cells. For this, we need to edit the
layout_column attribute.

Tip
Cell numbers are numbered from 0 from the left.

Start by deleting the top-left TextView. Notice the TextView from the right has moved
into the top-left position.

Next, in the new top-left TextView, edit the layout_column attribute to be 1 (this
assigns it to the second cell because the first cell is 0, and we want to leave the first one
empty), and for the next cell along, edit the layout_column attribute to be 2.

The result should look like this:

Figure 4.34 – Table column organized

Telegram Channel @IRFaraExam

Laying out data with TableLayout 133

For the next two rows of cells, edit their layout_column attributes from 0 to 2 from left
to right.

If you want clarification on the precise code for this row after editing, here is a snippet,
and remember to look in the download bundle in the Chapter 4 folder to see the whole
file in context.

Important note
In the code snippet that follows, I have also added some values to the text
attributes throughout.

<TableRow

 android:layout_width="wrap_content"

 android:layout_height="wrap_content">

 <TextView

 android:id="@+id/textView2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_column="1"

 android:padding="10sp"

 android:text="India"

 android:textColor="@android:color/black" />

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_column="2"

 android:padding="10sp"

 android:text="England"

 android:textColor="@android:color/black" />

</TableRow>

Try to complete this exercise, however, using the Attributes window if possible.

Telegram Channel @IRFaraExam

134 Getting Started with Layouts and Material Design

Linking back to the main menu
Finally, for this layout, we will add a button that links back to the menu, as follows:

1. Add another TableRow via the Component Tree.

2. Drag a button onto the new TableRow.

3. Edit its layout_column attribute to 1 so that it is in the middle of the row.

4. Edit its text attribute to Menu and edit its onClick attribute to match our already
existing loadMenuLayout method.

You can now run the app and switch back and forth between the different layouts.

If you want to, you can add some meaningful titles and data to the table by editing all
the text attributes of the TextView, as I have done in the following screenshot, which
shows the TableLayout running in the emulator:

Figure 4.35 – Adding some significant titles and data to the table by editing all the text attributes of the
TextView

Note
The author admits that the preceding data might be considered overly
optimistic.

Telegram Channel @IRFaraExam

Summary 135

As a final thought, think about an app that presents tables of data. Chances are that data
will be added to the table dynamically, not by the developer at design time as we have just
done, but more likely by the user or from a database on the web. In Chapter 16, Adapters
and Recyclers, we will see how to dynamically add data to different types of layout using
adapters; and in Chapter 27, Android Databases, we will also see how to create and use
databases in our apps.

Summary
We have covered many topics in just a few dozen pages. We have not only built
three different types of layout—including LinearLayout with nested layouts,
ConstraintLayout with manually configured constraints, and TableLayout (albeit
with fake data) —but we have also wired all the layouts together with clickable buttons
and text that trigger our Java code to switch between all these different layouts.

In the next chapter, we will stick with the topic of layouts. We will review many
attributes we have seen, and we will build our most aesthetically pleasing layout so far
by incorporating multiple CardView layouts, complete with depth and shadow into a
smooth-scrolling ScrollView layout.

Telegram Channel @IRFaraExam

Telegram Channel @IRFaraExam

5
Beautiful Layouts

with CardView and
ScrollView

This is the last chapter on layouts before we spend some time focusing more on Java and
object-oriented programming. We will formalize our learning of some of the different
attributes we have already met, and we will also introduce two more cool layouts:
ScrollView and CardView. To finish the chapter off, we will run the CardView
project on a tablet emulator.

In this chapter, we will cover the following:

• A quick summary of UI attributes

• Build our neatest layout so far using ScrollView and CardView

• Create and use a tablet emulator

Let's start by recapping some attributes.

Telegram Channel @IRFaraExam

138 Beautiful Layouts with CardView and ScrollView

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2005.

Attributes quick summary
In the last few chapters, we used and discussed quite a few different attributes. I thought it
would be worth a quick summary and further investigation of a few of the more common
attributes.

Sizing using dp
As we know, there are thousands of different Android devices. To try and have a system
of measurement that works across different devices, Android uses density-independent
pixels, or dp, as a unit of measurement. The way this works is by first calculating the
density of the pixels on the device an app is running on.

Important Note
We can calculate density by dividing the horizontal resolution by the horizontal
size in inches of the screen. This is all done on the fly, on the device on which
our app is running.

All we must do is use dp in conjunction with a number when setting the size of the
various attributes of our widgets. Using density-independent measurements, we can
design layouts that scale to create a uniform appearance on as many different screens as
possible.

So, does that mean problem solved then? We just use dp everywhere and our layouts
will work everywhere? Unfortunately, density independence is only part of the solution.
We will see more of how we can make our apps look great on a range of different screens
throughout the rest of the book.

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2005
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2005
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2005

Attributes quick summary 139

As an example, we can affect the height and width of a widget by adding the following
code to its attributes:

...

android:height="50dp"

android:width="150dp"

...

Alternatively, we can use the attributes window and add them through the comfort of the
appropriate edit boxes.

We can also use the same dp units to set other attributes, such as margin and padding. We
will look more closely at margin and padding in a minute.

Sizing fonts using sp
Another device-dependent unit of measurement used for sizing Android fonts is scalable
pixels, or sp. The sp unit of measurement is used for fonts and is pixel density-dependent
in the exact same way that dp is.

The extra calculation that an Android device will use when deciding how big your font
will be, based on the value of sp you use, is the user's own font size settings. So, if you test
your app on devices and emulators with normal-sized fonts, then a user who has a sight
impairment (or just likes big fonts) and has the font setting on large will see something
different from what you saw during testing.

Telegram Channel @IRFaraExam

140 Beautiful Layouts with CardView and ScrollView

If you want to try playing around with your Android device's font size settings, you can do
so on the emulator or a real device by selecting Settings | Display | Advanced | Font size
and try adjusting the slider highlighted in the following screenshot:

Figure 5.1 – Sizing fonts using sp

We can set the size of fonts using sp in any widget that has text. This includes Button,
TextView, and all the UI elements under the Text category in the palette as well as some
others. We do so by setting the textSize property like so:

android:textSize="50sp"

As usual, we can also use the attributes window to achieve the same thing.

Determining size with wrap or match
We can also decide how the size of UI elements, and many other UI elements, behave in
relation to the containing/parent element. We can do so by setting the layoutWidth and
layoutHeight attributes to either wrap_content or match_parent.

Telegram Channel @IRFaraExam

Attributes quick summary 141

For example, say we set the attributes of a lone button on a layout to the following:

...

android:layout_width="match_parent"

android:layout_height="match_parent"

....

Then, the button will expand in both height and width to match the parent. We can see
that the button in the next screenshot fills the entire screen:

Important Note
I added the button on a new layout to the project from the previous chapter.

Figure 5.2 – The button expanded in both height and width to match the parent

Telegram Channel @IRFaraExam

142 Beautiful Layouts with CardView and ScrollView

More common for a button is wrap_content, as shown next:

....

android:layout_width="wrap_content"

android:layout_height="wrap_content"

....

This causes the button to be as big as it needs to wrap its content (width and height in dp
and text in sp).

Using padding and margin
If you have ever done any web design, then you will be very familiar with the next two
attributes. Padding is the space from the edge of the widget to the start of the content
in the widget. Margin is the space outside of the widget that is left between other
widgets – including the margins of other widgets, should they have any. Here is a visual
representation:

Figure 5.3 – Padding and margin used

We can set the padding and margin in a straightforward way, equally for all sides, like this:

...

android:layout_margin="43dp"

android:padding="10dp"

...

Telegram Channel @IRFaraExam

Attributes quick summary 143

Look at the slight difference in naming convention for the margin and padding. The
padding is just called padding but the margin is referred to as layout_margin. This
reflects the fact that the padding only affects the UI element itself, but the margin can
affect other widgets in the layout.

Alternatively, we can specify different top, bottom, left, and right margins and paddings,
like this:

android:layout_marginTop="43dp"

android:layout_marginBottom="43dp"

android:paddingLeft="5dp"

android:paddingRight="5dp"

Specifying margin and padding values for a widget is optional and a value of 0 will be
assumed if nothing is specified. We can also choose to specify some of the different sides'
margins and paddings but not others, as in the earlier example.

It is probably becoming obvious that the way we design our layouts is extremely flexible,
but also that it is going to take some practice to achieve precise results with this many
options. We can even specify negative margin values to create overlapping widgets.

Let's look at a few more attributes, and then we will go ahead and play around with a
stylish layout – CardView.

Using the layout_weight property
Weight refers to a relative amount compared to other UI elements. So, for layout_
weight to be useful, we need to assign a value to the layout_weight property on two
or more elements.

We can then assign portions that add up to 100% in total. This is especially useful for
dividing up screen space between parts of the UI where we want the relative space they
occupy to remain the same regardless of screen size.

Using layout_weight in conjunction with sp and dp units can make for a simple and
flexible layout. For example, look at this code:

<Button

 android:layout_width="match_parent"

 android:layout_height="0dp"

 android:layout_weight=".1"

 android:text="one tenth" />

Telegram Channel @IRFaraExam

144 Beautiful Layouts with CardView and ScrollView

<Button

 android:layout_width="match_parent"

 android:layout_height="0dp"

 android:layout_weight=".2"

 android:text="two tenths" />

<Button

 android:layout_width="match_parent"

 android:layout_height="0dp"

 android:layout_weight=".3"

 android:text="three tenths" />

<Button

 android:layout_width="match_parent"

 android:layout_height="0dp"

 android:layout_weight=".4"

 android:text="four tenths" />

Here is what this code will do:

Figure 5.4 – The UI with the layout_weight property in use

Telegram Channel @IRFaraExam

Attributes quick summary 145

Notice that all the layout_height attributes are set to 0dp. Effectively, layout_
weight is replacing the layout_height property. The context in which we use
layout_weight is important or it won't work. Also note that we don't have to use
fractions of 1; we can use whole numbers, percentages, or any other number; as long as
they are relative to each other, they will probably achieve the effect you are after. Note that
layout_weight only works in certain contexts.

Using gravity
Gravity can be our friend and can be used in so many ways in our layouts. Just like gravity
in the solar system, it affects the position of items by moving them in a given direction, as
if they were being acted upon by gravity. The best way to see what gravity can do is to look
at some example code and pictures.

Say we set the gravity property on a button (or another widget) to left|center_
vertical like this:

android:gravity="left|center_vertical"

This will have an effect that looks like this:

Figure 5.5 – Setting the gravity property on a widget

Notice that the contents of the widget (in this case the button's text) are indeed aligned left
and centrally vertical.

In addition, a widget can influence its own position within a layout element with the
layout_gravity element, like this:

android:layout_gravity="left"

Telegram Channel @IRFaraExam

146 Beautiful Layouts with CardView and ScrollView

This would set the widget within its layout, as expected, like this:

Figure 5.6 – Setting the gravity layout to left

The previous code allows different widgets within the same layout to be affected as if the
layout has multiple different gravities.

The contents of all the widgets in a layout can be affected by the gravity property of
their parent layout by using the same code as a widget:

android:gravity="left"

There are in fact many more attributes than those we have discussed. Many we won't
need in this book and some are quite obscure, and you might never need them in your
entire Android career. But others are quite commonly used, such as background,
textColor, alignment, typeface, visibility, and shadowColor. Let's explore
some more attributes and layouts now.

Building a UI with CardView and ScrollView
Create a new project in the usual way and choose the Empty Activity project template.
Name the project CardView Layout.

We will design our CardView masterpiece inside a ScrollView layout, which, as the
name suggests, allows the user to scroll through the contents of the layout.

Expand the folders in the project explorer window so you can see the res folder. Expand
the res folder to see the layout folder.

Right-click the layout folder and select New. Notice there is an option for Layout
resource file. Select Layout resource file and you will see the New Resource File dialog
window.

In the File name field, enter main_layout. The name is arbitrary, but this layout is
going to be our main layout, so the name makes that plain.

Telegram Channel @IRFaraExam

Building a UI with CardView and ScrollView 147

Notice it is set to …ConstraintLayout in the Root element field. Change it to
ScrollView. This layout type appears to work just like LinearLayout; the difference
is that when there is too much content to display onscreen, it will allow the user to scroll
through the content by swiping with their finger.

Click the OK button and Android Studio will generate a new ScrollView in an XML
file called main_layout and place it in the layout folder ready for us to build our
CardView-based UI.

Android Studio will open the UI designer ready for action.

Setting the view with Java code
As we have done before, we will now load the main_layout.xml file as the layout for
our app by calling the setContentView method in the MainActivity.java file.

Select the MainActivity.java tab. In the unlikely event that the tab isn't there by default,
you can find it in the project explorer under app/java/your_package_name, where
your_package_name is equal to the package name that was auto-generated when you
created the project.

Amend the code in the onCreate method to look exactly like this next code. I have
highlighted the line that you need to add:

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main_layout);

}

You could now run the app but there is nothing to see except an empty ScrollView.

Adding image resources
We are going to need some images for this project. This is so that we can demonstrate
how to add them into the project (this section) and neatly display and format them in a
CardView widget (next section).

Telegram Channel @IRFaraExam

148 Beautiful Layouts with CardView and ScrollView

It doesn't really matter where you get your images from; it is the practical, hands-on
experience that is the purpose of this exercise. To avoid copyright and royalty problems,
I am going to use some book images from the Packt Publishing website. This also makes
it easy for me to provide you with all the resources you need to complete the project and
should relieve the bother of you acquiring your own images. Feel free to swap the images
in the Chapter 5/res/drawable folder.

There are three images: image_1.png, image_2.png, and image_3.png. To add
them to the project, follow these steps:

1. Find the picture files using your operating system's file browser.

2. Highlight them all and press Ctrl + C to copy them.

3. In the Android Studio project explorer, select the res/drawable folder by left-
clicking it.

4. Right-click the drawable folder and select Paste.

5. In the pop-up window that asks Choose Destination Directory, click OK to accept
the default destination, which is the drawable folder.

6. Click OK again to Copy Specified Files.

You should now be able to see your images in the drawable folder along with a couple of
other files that Android Studio placed there when the project was created, as shown in this
next screenshot:

Figure 5.7 – Expanding the drawable folder

Before we move on to the CardView widget itself, let's design what we will put inside
our cards.

Telegram Channel @IRFaraExam

Building a UI with CardView and ScrollView 149

Creating the contents for the cards
The next thing we need to do is create the contents for our cards. It makes sense to
separate the content from the layout. What we will do is create three separate layouts,
called card_contents_1, card_contents_2, and card_contents_3. They will
each contain a LinearLayout, which itself will contain an image and some text.

Let's create three more layouts with a LinearLayout layout at their root:

1. Right-click the layout folder and select New layout resource file.

2. Name the file card_contents_1 and change …ConstraintLayout to
LinearLayout for the root element.

3. Click OK to create the new file in the layout folder.

4. Repeat steps 1 through 3 two more times, changing the filename each time to
card_contents_2 and then card_contents_3.

Now, select the card_contents_1.xml tab and make sure you are in the design view. We
will drag and drop some elements to the layout to get the basic structure, and then we will
add some sp, dp, and gravity attributes to make them look nice:

1. Drag a TextView onto the top of the layout.

2. Drag an ImageView onto the layout below the TextView.

3. In the Resources pop-up window, select Project | image_1, then click OK.

4. Drag another two TextView below the image.

Telegram Channel @IRFaraExam

150 Beautiful Layouts with CardView and ScrollView

This is what your layout should look like now:

Figure 5.8 – Making the layout look nicer by adding sp, dp, and gravity attributes

Now let's use some Material Design guidelines to make the layout look more appealing:

Important Note
It is possible that as you proceed through these modifications the UI elements
on the bottom of the layout might disappear off the bottom of the design view.
If this happens to you, remember you can always select any UI element from
the Component Tree window underneath the palette.

1. Set the textSize attribute for the TextView widget at the top to 24sp.

2. Still working on the TextView widget at the top, set the layout_margin | layout_
margin attribute to 16dp.

3. Set the text attribute to Learning Java by Building Android Games
(or whatever title suits your image).

4. On the ImageView widget, set the layout_width and layout_height
attributes to wrap_content.

5. Still working on the ImageView widget, set the layout_gravity attribute to
center_horizontal.

6. On the TextView widget below ImageView, set textSize to 16sp.

Telegram Channel @IRFaraExam

Building a UI with CardView and ScrollView 151

7. On the same TextView widget, set layout_margin | layout_margin to 16dp.

8. On the same TextView widget, set the text attribute to Learn Java and
Android from scratch by building 6 playable games (or
something that describes your image).

9. On the bottom TextView widget, change the text attribute to BUY NOW.

10. On the same TextView widget, set layout_margin | layout_margin to 16dp.

11. On the same TextView widget, set the textSize attribute to 24sp.

12. On the same TextView widget, set the textColor attribute to @color/
teal_200.

13. On the LinearLayout layout holding all the other elements, set padding |
padding to 15dp. Note that it is easiest to select LinearLayout from the
Component Tree window.

At this point, your layout will look very similar to as in the following screenshot:

Figure 5.9 – Enhancing the appeal of the layout using some Material Design guidelines

Telegram Channel @IRFaraExam

152 Beautiful Layouts with CardView and ScrollView

Now lay out the other two files (card_contents_2 and card_contents_3) with
the exact same dimensions and colors. When you get the Resources popup to choose an
image, use image_2 and image_3, respectively. Also, change all the text attributes on
the first two TextView elements so that the titles and descriptions are unique. The titles
and descriptions don't really matter; it is the layout and appearance we are learning about.

Note
Note that all the sizes and colors were derived from the Material Design
website here: https://material.io/design/introduction
and the Android-specific UI guidelines here: https://developer.
android.com/guide/topics/ui/look-and-feel. These are
well worth studying alongside or soon after you complete this book.

Now we can move on to the CardView widgets.

Defining dimensions for CardView
Right-click the values folder and select New | Values resource file. In the New Resource
File pop-up window, name the file dimens (short for dimensions) and click OK. Android
Studio will create and open a file called dimens.xml. We will use this file to create some
common values that our CardView will use by referring to them.

To achieve this, we will edit the XML directly in the Code tab. Edit the dimens.xml file
to be the same as the following code:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <dimen name="card_corner_radius">16dp</dimen>

 <dimen name="card_margin">10dp</dimen>

</resources>

Be sure to make it exactly the same because a small omission could cause an error and
prevent the project from working.

We have defined two resources, the first called card_corner_radius with a value of
16dp and the second called card_margin with a value of 10dp.

We will refer to these resources from the main_layout file and use them to consistently
configure our three CardView elements.

Telegram Channel @IRFaraExam

https://material.io/design/introduction
https://developer.android.com/guide/topics/ui/look-and-feel
https://developer.android.com/guide/topics/ui/look-and-feel

Building a UI with CardView and ScrollView 153

Adding CardView to our layout
Switch to the main_layout.xml tab and make sure you are in the design view. You
probably recall that we are now working with a ScrollView that will scroll the contents
of our app, rather like how a web browser scrolls the contents of a web page that doesn't fit
on one screen.

ScrollView has a limitation – it can only have one direct child layout. We want it to
contain three CardView widgets.

To overcome this problem, drag a LinearLayout layout from the Layouts category
of the palette. Be sure to pick LinearLayout (vertical), as represented by this icon in the
palette:

Figure 5.10 – The LinearLayout (vertical) icon

We will add our three CardView inside the LinearLayout, and then the whole thing
will scroll nice and smoothly without any errors.

The CardView widget can be found in the Containers category of the palette, so switch
to that and locate CardView.

Drag a CardView onto the LinearLayout on the design and you might or might not
get a pop-up message in Android Studio. This is the message:

Figure 5.11 – The popup asking for permission to add CardView

If you do get this message, click the OK button. Android Studio will do some work behind
the scenes and will add the necessary parts to the project. Android Studio has added some
more classes to the project, specifically, classes that provide CardView features to older
versions of Android that wouldn't otherwise have them.

You should now have a CardView on the design. Until there are some contents in it, the
CardView is only easily visible in the Component Tree window.

Telegram Channel @IRFaraExam

154 Beautiful Layouts with CardView and ScrollView

Select the CardView via Component Tree and configure the following attributes:

1. Set layout_width to wrap_content.

2. Set layout_gravity to center.

3. Set layout_margin | layout_margin to @dimen/card_margin to use the value
for a margin that we defined in the dimens.xml file.

4. Set the cardCornerRadius attribute to @dimen/card_corner_radius to
use the value for a radius that we defined in the dimens.xml file.

5. Set cardElevation to 2dp.

Now switch to the Code tab and you will find you have something like this next code:

<androidx.cardview.widget.CardView

 android:layout_width="wrap_content"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:layout_margin="@dimen/card_margin"

 app:cardCornerRadius="@dimen/card_corner_radius"

 app:cardElevation="2dp" />

The previous code listing only shows the code for CardView.

The problem at the moment is that our CardView is empty. Let's fix that by adding the
contents of card_contents_1.xml. Here is how to do it.

Including layout files inside another layout
We need to edit the code very slightly and here is why. We need to add an include
element to the code. The include element is the code that will insert the contents from
the card_contents_1.xml layout. The problem is that to add this code, we need to
slightly alter the format of the CardView XML. The current format starts and concludes
CardView with one single tag, like this:

<androidx.cardview.widget.CardView

…

…/>

Telegram Channel @IRFaraExam

Building a UI with CardView and ScrollView 155

We need to change the format to a separate opening and closing tag like this (don't change
anything just yet):

<androidx.cardview.widget.CardView

…

…

</androidx.cardview.widget.CardView>

This change in format will enable us to add the include… code and our first CardView
widget will be complete. With this in mind, edit the code of the CardView to be exactly
the same as the following code. I have highlighted the two new lines of code but note that
the forward slash that was after the cardElevation attribute has also been removed:

<androidx.cardview.widget.CardView

 android:layout_width="wrap_content"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:layout_margin="@dimen/card_margin"

 app:cardCornerRadius="@dimen/card_corner_radius"

 app:cardElevation="2dp" >

 <include layout="@layout/card_contents_1" />

</androidx.cardview.widget.CardView>

Telegram Channel @IRFaraExam

156 Beautiful Layouts with CardView and ScrollView

You can now view the main_layout file in the visual designer and see the layout
inside the CardView element. The visual designer does not reveal the real aesthetics of
CardView, however. We will see all the CardView widgets together scrolling nicely in
the completed app shortly. Here is a screenshot of the screen in the emulator showing
where we are up to so far:

Figure 5.12 – The layout inside the CardView element

Add two more CardView widgets to the layout and configure them the same as the first
with one exception. On the second CardView, set cardElevation to 22dp and on the
third CardView, set cardElevation to 42dp. Change the include code to reference
card_contents_2 and card_contents_3, respectively.

Tip
You could do this very quickly by copy and pasting the CardView XML and
simply amending the elevation and the include code as mentioned in the
previous paragraph.

Telegram Channel @IRFaraExam

Building a UI with CardView and ScrollView 157

This is what the CardView-related code inside the LinearLayout code will look like
when you are done:

<androidx.cardview.widget.CardView

 android:layout_width="wrap_content"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:layout_margin="@dimen/card_margin"

 app:cardCornerRadius="@dimen/card_corner_radius"

 app:cardElevation="2dp" >

 <include layout="@layout/card_contents_1" />

</androidx.cardview.widget.CardView>

<androidx.cardview.widget.CardView

 android:layout_width="wrap_content"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:layout_margin="@dimen/card_margin"

 app:cardCornerRadius="@dimen/card_corner_radius"

 app:cardElevation="22dp" >

 <include layout="@layout/card_contents_2" />

</androidx.cardview.widget.CardView>

<androidx.cardview.widget.CardView

 android:layout_width="wrap_content"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:layout_margin="@dimen/card_margin"

 app:cardCornerRadius="@dimen/card_corner_radius"

 app:cardElevation="42dp" >

 <include layout="@layout/card_contents_3" />

</androidx.cardview.widget.CardView>

Telegram Channel @IRFaraExam

158 Beautiful Layouts with CardView and ScrollView

Now we can run the app and see our three beautiful, elevated CardView widgets in
action. In this next screenshot, I have captured it so that you can see the effect the
elevation setting has on creating a very pleasing depth with shadow effect:

Figure 5.13 – A pleasing depth with shadow effect

Important Note
The screenshot will likely be slightly unclear in the black and white printed
version of this book. Be sure to build and run the app for yourself to see this
cool effect.

Let's explore our latest app on a tablet emulator.

Creating a tablet emulator
We will often want to test our apps on multiple different devices. Fortunately, Android
Studio makes it easy to create as many different emulators as we like. Follow these next
steps to make a tablet emulator.

Telegram Channel @IRFaraExam

Creating a tablet emulator 159

Select Tools | AVD Manager and then click the Create Virtual Device… button on the
Your Virtual Devices window. You will see the Select Hardware window pictured next:

Figure 5.14 – The Select Hardware window

Select the Tablet option from the Category list, and then highlight the Pixel C tablet from
the choice of available tablets.

Tip
If you are reading this sometime in the future, the Pixel C option might have
been updated. The choice of tablet is less important than practicing this process
of creating a tablet emulator and then testing our apps.

Click the Next button. On the System Image window that follows, just click Next because
this will select the default system image. It is possible that choosing your own image will
cause the emulator not to work properly.

Finally, on the Android Virtual Device screen, you can leave all the default options.
Feel free to change the AVD Name option for your emulator or the Startup Orientation
(portrait or landscape) option if you want to. Click the Finish button when you are ready.

Telegram Channel @IRFaraExam

160 Beautiful Layouts with CardView and ScrollView

Shut down the phone emulator if you have it running. Now, whenever you run one of
your apps from Android Studio, you will be given the option to choose Pixel C (or
whatever tablet you created). Here is a screenshot of my Pixel C emulator running the
CardView app:

Figure 5.15 – Pixel C emulator running the CardView app

Not too bad, but there is quite a large amount of wasted space and it looks a bit odd. Let's
try it in landscape mode. If you try running the app with the tablet in landscape mode, the
results are worse. What we can learn from this is that we are going to have to design our
layouts for different-sized screens and different orientations. Sometimes they will be clever
designs that scale to suit different sizes or orientations, but often they will be completely
different designs in separate layout files.

Telegram Channel @IRFaraExam

Frequently asked question 161

Frequently asked question
1. Do I need to master all this stuff about Material Design?

No, not unless you want to be a professional designer. If you just want to make your
own apps and sell them or give them away on the Play Store, then knowing just the
basics is good enough.

Summary
In this chapter, we built aesthetically pleasing CardView layouts and put them in a
ScrollView so the user can swipe through the contents of the layout a bit like browsing
a web page. To finish the chapter off, we launched a tablet emulator and saw that we are
going to need to get smart with how we design our layouts if we want to cater to different
device sizes and orientations. In Chapter 24, Design Patterns, Multiple Layouts, and
Fragments, we will begin to take our layouts to the next level and learn how to cope with
such a diverse array of devices using fragments.

Before we do, however, it will serve us well to learn more Java and how we can use it to
control our UI and interact with the user. That will be the focus of the next seven chapters.

Of course, the elephant in the room at this point is that despite learning a lot about
layouts, project structure, the connection between Java and XML, and much more besides,
our UIs, no matter how pretty, don't actually do anything! We need to seriously upgrade
our Java skills while also learning more about how to apply them in an Android context.
In the next chapter, we will do exactly that. We will see how to add Java code that executes
at exactly the moment we need it to by working with the Android Activity life cycle.

Telegram Channel @IRFaraExam

Telegram Channel @IRFaraExam

6
The Android

Lifecycle
In this chapter, we will get familiar with the lifecycle of an Android app. At first, this might
sound a bit strange, that a computer program has a lifecycle, but it will make sense soon.

The lifecycle is the way that all Android apps interact with the Android OS. Just like
the lifecycle of humans interacts with the world around them, we have no choice but to
interact with it and must be prepared to handle different events without notice if we want
our apps to survive.

We will see the phases of the lifecycle that an app goes through from creation to
destruction and how this helps us know where to put our Java code, depending on what
we are trying to achieve.

In brief, in this chapter we will look at the following:

• The life and times of an Android app

• What is method overriding

• The phases of the Android lifecycle

• What exactly we need to know and do to code our apps

Telegram Channel @IRFaraExam

164 The Android Lifecycle

• A lifecycle demonstration mini app.

• A quick look at code structure ready to get Java coding in the next chapter

Let's start learning about the Android lifecycle.

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2006.

The life and times of an Android app
We have talked a bit about the structure of our code; we know that we can write classes,
and within those classes we have methods, and the methods contain our code, which
gets things done. We also know that when we want the code within a method to run (be
executed), we call that method by using its name.

Also, in Chapter 2, First Contact: Java, XML, and the UI Designer, we learned that Android
itself calls the onCreate method just before the app is ready to start. We saw this when
we output to the logcat and used the Toast class to send a pop-up message to the user.

What we will look at in this chapter is what happens throughout the lifecycle of every app
we write – when it starts and ends as well as a few stages in between as well. And what we
will see is that Android interacts with our app on numerous occasions, each time it is run.

How Android interacts with our apps
It does so by calling methods that are contained within the Activity class. Even if
the method is not visible within our Java code, it is still being called by Android at the
appropriate time. If this doesn't seem to make any sense, then read on.

Did you ever wonder why the onCreate method had a strange-looking line of code just
before it?

@Override

What is going on here is that we are saying to Android, when you call onCreate, please
use our overridden version because we have some things to do at that time.

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2006
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2006
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2006

A simplified explanation of the Android lifecycle 165

Furthermore, you might remember the odd-looking first line of code in the
onCreate method:

super.onCreate(savedInstanceState)

This is telling Android to call the original/official version of onCreate before proceeding
with our overridden version. This is not just a quirk of Android – method overriding is
built into Java.

There are also many other methods that we can optionally override, and they allow us
to add our code at appropriate times within the lifecycle of our Android app. Just as
onCreate is called just before the app is shown to the user, there are more methods that
are called at other times. We haven't seen them yet, we haven't overridden them yet, but
they are there, they are called, and their code executes.

The reason we need to care about the methods of our app that Android calls whenever
it wants is they control the very life and death of our code. For instance, what if our
app allows the user to type an important reminder. Then, halfway through typing the
reminder their phone rings, our app disappears, and the data (the reminder) is gone.

It is vital and thankfully quite straightforward that we learn when, why, and which
methods Android will call as part of the lifecycle of our app. We can then know where we
need to override methods to add our own code and where to add the real functionality
(code) that defines our app.

Let's examine the Android lifecycle, then we can move on to the ins and outs of Java and
we will know exactly where to put the code that we write.

A simplified explanation of the
Android lifecycle
If you have ever used an Android device, you have probably noticed it works quite
differently from many other operating systems. For example, you could be using an
app – say you're checking what people are doing on Facebook. Then, you get an email
notification and you tap the notification to read it. Midway through reading the email,
you might get a Twitter notification and because you're waiting on important news from
someone you follow, you interrupt your email reading and change apps to Twitter with a
touch.

After reading the tweet, you fancy a game of Angry Birds but midway through the first
fling, you suddenly remember that Facebook post. So, you quit Angry Birds and tap the
Facebook icon.

Telegram Channel @IRFaraExam

166 The Android Lifecycle

Then you resume Facebook, probably at the exact same point you left it. You could have
resumed reading the email, decided to reply to the tweet, or started an entirely new app.

All this backwards and forwards takes quite a lot of management on the part of the
operating system, independently of the individual apps themselves.

The difference between, say, a Windows PC and Android in the context we have just
discussed is this: with Android, although the user decides which app they are using, the
OS decides when to close down (destroy) an application and our user's data (like the
hypothetical note) along with it. We just need to consider this when coding our apps. Just
because we might write code to do some cool thing with our user's input, it doesn't mean
that Android will let the code execute.

The lifecycle phases demystified
The Android system has multiple distinct phases that any given app can be in. Depending
upon the phase, the Android system decides how the app is viewed by the user – or
whether it is viewed at all.

Android has these phases so it can decide which app is in current use and so that it can
then give the right amount of resources, such as memory and processing power.

In addition, as the user interacts with the device, for example, by touching the screen,
Android must give the details of that interaction to the correct app. For instance, a drag-
and-release movement in Angry Birds means taking a shot, but in a messaging app, it
might mean delete a text message.

We have already raised the issue of when the user quits our app to answer a phone call;
will they lose their progress/data/important note?

Android has a system that, when simplified a little for the purposes of explanation, means
that every app on an Android device is in one of the following phases:

• Being created

• Starting

• Resuming

• Running

• Pausing

• Stopping

• Being destroyed

Telegram Channel @IRFaraExam

How we handle the lifecycle phases 167

The list of phases will hopefully appear logical. As an example, the user presses the
Facebook app icon and the app is created. Then it is started. All straightforward so far,
but next on the list is resuming.

It is not as illogical as it might first appear if, for a moment, we can just accept that the app
resumes after it starts and then all will become clear as we continue.

After resuming, the app is running. This is when the Facebook app has control of the
screen and the greater share of system memory and processing power and is receiving the
details of the user's input.

Now, what about our example when we switched from the Facebook app to the email app?

As we tap to go to read our email, the Facebook app will have entered the paused phase,
followed by the stopping phase, and the email app will enter the being created phase,
followed by resuming, then running.

If we decide to revisit Facebook, as in the scenario earlier, the Facebook app will probably
skip being created and go straight to resume and then be running again, most likely
exactly in the place we left it.

Note that at any time, Android can decide to stop then destroy an app. In which case,
when we run the app again, it will need to be created at the first phase all over again.

So, had the Facebook app been inactive long enough, or perhaps Angry Birds had needed
so many system resources that Android had destroyed the Facebook app, then our
experience of finding the exact post we were previously reading might have been different.

If all this phase stuff is starting to get confusing, then you will be pleased to know that the
only reasons to mention it are the following:

• You know it exists

• We occasionally need to interact with it

• We will take things step by step when we do

Now we know about the lifecycle phases, let's learn about how we can handle them.

How we handle the lifecycle phases
When we are programming an app, how do we interact with this complexity? The good
news is that the Android code that was autogenerated when we created our first project
does most of it for us.

Telegram Channel @IRFaraExam

168 The Android Lifecycle

As we have discussed, we just don't see the methods that handle this interaction, but we
do have the opportunity to override them and add our own code to that phase if we
need to.

This means we can get on with learning Java and making Android apps until we come to
one of the occasional instances where we need to do something in one of the phases.

Important note
If our app has more than one activity, they will each have their own lifecycle.
This doesn't have to complicate things and overall it will make things easier
for us.

Coming up is a quick explanation of the methods provided by Android, for our
convenience, to manage the lifecycle phases. To clarify our discussion of lifecycle
methods, they are listed next to their corresponding phases that we have been discussing.
However, as you will see, the method names make it clear on their own where they fit in.

There is also a brief explanation or suggestion for when we might use a given method
and thereby interact during a specific phase. We will meet most of these methods as we
progress through the book. We have of course already seen onCreate:

• onCreate: This method is executed when the activity is being created.
Here, we get everything ready for the app, including the UI (such as calling
setContentView), graphics, and sound.

• onStart: This method is executed when the app is in the starting phase.

• onResume: This method runs after onStart but can also be entered (most
logically) after our activity is resumed after being previously paused. We might
reload previously saved user data (such as an important note) from when the app
was interrupted, perhaps by a phone call or the user running another app.

• onPause: This occurs when our app is pausing. Here, we might save unsaved data
(such as the note) that could be reloaded in onResume. Activities always transition
into a paused state when another UI element is displayed on top of the current
activity (for example, a pop-up dialog) or when the activity is about to be stopped
(for example, when the user navigates to a different activity).

• onStop: This relates to the stopping phase. This is where we might undo
everything we did in onCreate, such as releasing system resources or writing
information to a database. If we reach here, we are probably going to get destroyed
sometime soon.

Telegram Channel @IRFaraExam

How we handle the lifecycle phases 169

• onDestroy: This is when our activity is finally being destroyed. There is no
turning back from this phase. It's our last chance to dismantle our app in an orderly
manner. If we reach here, we will be going through the lifecycle phases from the
beginning next time.

This diagram shows the likely flows of execution between the methods:

Figure 6.1 – Flow of execution

All the method descriptions and their related phases should appear straightforward. The
only real question is what about the running phase? As we will see when we write our
code in the other methods/phases, the onCreate, onStart, and onResume methods
will prepare the app, which then persists, forming the running phase. Then the onPause,
onStop, and onDestroy methods will occur afterward.

Telegram Channel @IRFaraExam

170 The Android Lifecycle

Now we can look at these lifecycle methods in action with a mini app. We will do so by
overriding them all and adding a Log message and a Toast message to each. This will
visually prove the phases our app passes through.

Lifecycle demo app
In this section, we will do a quick experiment that will help familiarize ourselves with the
lifecycle methods our app uses as well as giving us a chance to play around with a bit more
Java code.

Follow these steps to start a new project and then we can add some code:

1. Start a new project.

2. Choose the Basic Activity template.

3. Call the project Lifecycle Demo. Of course, the code is in the download bundle in
the Chapter 6 folder should you wish to refer to it or copy and paste it.

4. Wait for Android Studio to generate the project files and then open the
MainActivity.java file in the code editor.

You have created a new project with all the default settings. We will only need the
MainActivity.java file for this demonstration and will not be building a UI.

Coding the lifecycle demo app
In the MainActivity.java file, find the onCreate method and add these two lines
of code just before the closing curly } brace, which marks the end of the onCreate
method:

Toast.makeText(this, "In onCreate", Toast.LENGTH_SHORT).show();

Log.i("info", "In onCreate");

The entire onCreate method should now look like this next code, where the highlighted
code is the two lines we just added and the … is where we have skipped some lines of
autogenerated code to make the book more readable. For the full code listing, check the
MainActivity.java file in the download bundle. Here is the code:

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

Telegram Channel @IRFaraExam

Lifecycle demo app 171

 Toast.makeText(this, "In onCreate",

 Toast.LENGTH_SHORT).show();

 Log.i("info", "In onCreate");

}

Tip
Remember you will need to use the Alt + Enter keyboard combination twice to
import the classes needed for Toast and Log.

After the closing curly brace, }, of the onCreate method, leave one clear line and add
the following five lifecycle methods and their contained code. Also note that it doesn't
matter in what order we add our overridden methods. Android will call them in the
correct order regardless of the order in which we type them:

@Override

public void onStart() {

 // First call the "official" version of this method

 super.onStart();

 Toast.makeText(this, "In onStart",

 Toast.LENGTH_SHORT).show();

 Log.i("info", "In onStart");

}

@Override

public void onResume() {

 // First call the "official" version of this method

 super.onResume();

 Toast.makeText(this, "In onResume",

 Toast.LENGTH_SHORT).show();

Telegram Channel @IRFaraExam

172 The Android Lifecycle

 Log.i("info", "In onResume");

}

@Override

public void onPause() {

 // First call the "official" version of this method

 super.onPause();

 Toast.makeText(this, "In onPause",

 Toast.LENGTH_SHORT).show();

 Log.i("info", "In onPause");

}

@Override

public void onStop() {

 // First call the "official" version of this method

 super.onStop();

 Toast.makeText(this, "In onStop",

 Toast.LENGTH_SHORT).show();

 Log.i("info", "In onStop");

}

@Override

public void onDestroy() {

 // First call the "official" version of this method

 super.onDestroy();

 Toast.makeText(this, "In onDestroy",

 Toast.LENGTH_SHORT).show();

 Log.i("info", "In onDestroy");

}

Telegram Channel @IRFaraExam

Lifecycle demo app 173

First, let's talk about the code itself. Notice that the method names all correspond to
the lifecycle methods and phases we discussed earlier in this chapter. Notice that all the
method declarations are preceded by the @Override line of code. Also see that the first
line of code inside each method is super.on ...

What exactly is going on here is the following:

• Android calls our methods at the various times we have already discussed.

• The @Override keyword shows that these methods replace/override the original
version of the method that is provided as part of the Android API. Note that we
don't see these overridden methods but they are there, and if we didn't override
them these original versions would be called by Android instead of ours.

The super.on..., which is the first line of code within each of the overridden methods,
then calls these original versions. So, we don't simply override these original methods in
order to add our own code – we also call them, and their code is executed too.

Tip
For the curious, the keyword super is for super-class. We will explore
method overriding and super classes in several chapters as we progress.

Finally, the code that you added will make each of the methods output one Toast
message and one Log message. However, the messages that are output vary, as can be seen
by the text in between the double quote marks "". The messages that are output will make
it clear which method produced them.

Running the lifecycle demo app
Now that we have looked at the code, we can play with our app and learn about the
lifecycle from what happens:

1. Run the app on either a device or an emulator.

2. Watch the screen of the emulator and you will see the following appear one
after the other as Toast messages on the screen: In onCreate, In onStart,
and In onResume.

Telegram Channel @IRFaraExam

174 The Android Lifecycle

3. Notice the following messages in the logcat window. If there are too many messages,
remember you can filter them by setting the Log level drop-down to Info.

 info:in onCreate

 info:in onStart

 info:in onResume

4. Now tap the back button on the emulator or the device. Notice you get the following
three Toast messages in exactly this order: In onPause, In onStop, and In
onDestroy. Verify that we have matching output in the logcat window.

5. Next, run a different app – perhaps the Hello Android app from Chapter 1, Beginning
Android and Java, (but any app will do) – by tapping its icon on the emulator/device
screen.

6. Now try the following: open the task manager on the emulator.

7. See Chapter 3, Exploring Android Studio and the Project Structure, and the Using
the emulator as a real device section for how to do this on the emulator if you are
unsure.

8. You should now see all the recently run apps on the device.

9. Tap the Lifecycle Demo app and notice that the usual three starting messages are
shown. This is because our app was previously destroyed.

10. Now, however, tap the task manager button again and switch to the Hello Android
app. Notice that this time, only the In onPause and In onStop messages are shown.
Verify that we have matching output in the logcat. The app has not been destroyed.

11. Now, again using the task manager button, switch to the Lifecycle Demonstration
app. You will see that only the In onStart and In onResume messages are shown,
indicating that onCreate was not required to get the app running again. This is as
expected because the app was not previously destroyed, merely stopped.

Next, let's talk about what we saw when we ran the app.

Examining the lifecycle demo app output
When we started the lifecycle demo app for the first time, we saw that the onCreate,
onStart, and onResume methods were called. Then, when we closed the app using the
back button, the onPause, onStop, and onDestroy methods were called.

Telegram Channel @IRFaraExam

Lifecycle demo app 175

Furthermore, we know from our code that the original versions of all these methods are
also called because we are calling them ourselves with the super.on... code, which is
the first thing we do in each of our overridden methods.

The quirk in our app's behavior came when we used the task manager to switch
between apps – when switching away from the lifecycle demo, it was not destroyed and,
subsequently, when switching back, it was not necessary to run onCreate.

Where's my Toast?
The opening three and closing three Toast messages are queued and the
methods have already completed by the time they are shown. You can verify
this by running the experiments again and will see that all three starting/
closing log messages are output before even the second Toast message is
shown. However, the Toast messages do reinforce our knowledge about the
order, if not the timing.

It is entirely possible (but not that likely) that you got slightly different results when you
followed the preceding steps. What we know for sure is that when our apps are run on
thousands of different devices by millions of different users who have different preferences
for interacting with their devices, Android will call the lifecycle methods at times we
cannot easily predict.

For example, what happens when the user exits the app by pressing the home button?
When we open two apps one after the other and then use the back button to switch to
the earlier app, will that destroy or just stop the app? What happens when the user has a
dozen apps in their task manager and the operating system needs to destroy some apps
that were previously only stopped; will our app be one of the "victims"?

You can, of course, test out all the preceding scenarios on the emulator. But the results will
only be true for the one time you test it. It is not guaranteed that the same behavior will be
shown every time and certainly not on every different Android device.

At last some good news! The solution to all this complexity is to follow a few simple rules:

• Set up your app ready to run in the onCreate method.

• Load your user's data in the onResume method.

• Save your user's data in the onPause method.

• Tidy up your app and make it a good Android citizen in the onDestroy method.

• Watch out throughout the book for a couple of occasions when we might like to use
onStart and onStop.

Telegram Channel @IRFaraExam

176 The Android Lifecycle

If we do what we mentioned above (we will see how over the course of the book), we can
just stop worrying about all this lifecycle stuff and let Android handle it! There are a few
more methods we can override as well. So, let's look at them.

Some other overridden methods
You may have noticed that there are two other autogenerated methods in the code of
all our projects using the Basic Activity template. They are onCreateOptionsMenu
and onOptionsItemSelected. Most Android apps have a pop-up menu so Android
Studio generates one by default; including the basic code to make it work.

You can see the XML that describes the menu in res/menu/menu_main.xml from the
project explorer. The key line of XML code is this:

<item

 android:id="@+id/action_settings"

 android:orderInCategory="100"

 android:title="@string/action_settings"

 app:showAsAction="never" />

This describes a menu item with the text Settings. If you run any of the apps built with the
Basic Activity template we have created so far, you will see the button as shown next:

Figure 6.2 – Settings button

Telegram Channel @IRFaraExam

Lifecycle demo app 177

If you tap the button, you will see it in action as shown next:

Figure 6.3 – Settings option

So, how do the onCreateOptionsMenu and onOptionsItemSelected methods
produce these results?

The onCreateOptionsMenu method loads the menu from the menu_main.xml file
with this line of code:

getMenuInflater().inflate(R.menu.menu_main, menu);

It is called by the default version of the onCreate method, which is why we don't see
it happen.

Tip
We will use the pop-up menu in Chapter 17, Data Persistence and Sharing, to
switch between different screens of our app.

The onOptionsItemSelected method is called when the user taps the menu button.
This method handles what will happen when an item is selected. Now nothing happens –
it just returns true.

Feel free to add Toast and Log messages to these methods to test out the order and
timing I have just described. I just thought it was a good time to quickly introduce these
two methods because they have been lurking around in our code without an introduction
and I didn't want them to feel left out.

Now we have seen how the Android lifecycle works and been introduced to a whole
bunch of methods we can override to interact with the lifecycle, we had better learn the
fundamentals of Java so that we can write some code to go in these methods as well as our
own methods.

Telegram Channel @IRFaraExam

178 The Android Lifecycle

The structure of Java code – revisited
We have already seen that each time we create a new Android project, we also create a new
Java package as a kind of container for the code we write.

We have also learned about and played around with classes. We have imported and taken
direct advantage of classes from the Android API such as Log and Toast. We have also
used the AppCompatActivity class, but in a different manner to Log and Toast.
You might remember the first line of code in all our projects so far, after the import
statements, used the extends keyword:

public class MainActivity extends AppCompatActivity {

When we extend a class as opposed to just importing it, we are making it our own. In fact,
if you take another look at the line of code, you can see that we are making a new class
with a new name, MainActivity. but basing it on the AppCompatActivity class
from the Android API.

Important note
The AppCompatActivity class is a slightly modified version of the
Activity class. It gives extra features for older versions of Android that
would otherwise not be present. Everything we have discussed regarding
Activity is equally true for AppCompatActivity. We will see some
more variations in the Activity class as we progress. It is entirely possible
that you have a different class in place of AppCompatActivity, dependent
upon changes that have taken place since this was written. Updates of Android
Studio will sometimes change the default Activity class that it uses when
it creates a new project. If the name ends in ...Activity, it doesn't matter
because everything we have discussed and will discuss is equally true. I will just
refer to this class simply as Activity.

In summary:

• We can import classes to use them.

• We can extend classes to use them.

• We will eventually make our own classes.

The crucial point here is this:
Classes, in their various forms, are the foundations of every single line of code
in Java. Everything in Java is or is part of a class.

Telegram Channel @IRFaraExam

Introducing fragments and the lifecycle 179

Our own classes and those written by others are the building blocks of our code and the
methods within the classes wrap the functional code – the code that does the work.

We can write methods within the classes that we extend; as we did with topClick and
bottomClick in Chapter 2, First Contact: Java, XML, and the UI Designer. Furthermore,
we overrode methods that are already part of classes written by others – such as
onCreate and onPause and so on.

The only code, however, that we put in these methods was a few calls using Toast and
Log. We aren't going to code the next killer app with just that. But now we can take some
more steps.

Introducing fragments and the lifecycle
You probably remember from Chapter 2, First Contact: Java, XML, and the UI
Designer, that the Java code in the Basic Activity template is not just contained in
the MainActivity.java file. There are also the FirstFragment.java and
SecondFragment.java files. These files, we learned, contain the code that
controls what happens when the user navigates between the two screens of the Basic
Activity template app. The code inside these two files is different in structure from the
MainActivity.java file. Here is a quick peek at FirstFragment.java:

public class FirstFragment extends Fragment {

 @Override

 public View onCreateView(

 LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState

)

 {

 ...

 }

 ...

}

Telegram Channel @IRFaraExam

180 The Android Lifecycle

I have omitted much of the code from this file because it is unnecessary for the purpose
of this introductory discussion. A Fragment is also a class just as an Activity is a class. A
Fragment can, and in this app does, represent a screen from the app. The Fragment
classes of this app and other apps that contain them are controlled by the Activity
class(es). We will look closely at the Fragment class in Chapter 24, Design Patterns,
Multiple Layouts, and Fragments. The thing to notice here is that the Fragment class has
an onCreateView method.

When our app uses one or more instances of the Fragment class, they will also be a part
of the Android lifecycle and the Fragment class has its own set of lifecycle methods, of
which onCreateView is one.

Exactly how the OS lifecycle, the Activity class, and the Fragment class interact
with each other will be explained in Chapter 24, Design Patterns, Multiple Layouts, and
Fragments. It is just worth knowing for now that they are all interconnected.

Summary
We have learned about the Android lifecycle and how the operating system calls set
methods at set times.

We have also seen that it is not only us that can call our code. The operating system can
also call the code contained within the methods we have overridden. By adding the
appropriate code into the various overridden lifecycle methods, we can be sure that the
right code will be executed at the right time.

What we need to do now is learn how to write some more Java code. In the next chapter,
we'll start to focus on Java, and because we have such a good grounding already on
Android, we will have no problem practicing and using everything we learn.

Telegram Channel @IRFaraExam

7
Java Variables,
Operators, and

Expressions
In this chapter and the next, we are going to learn and practice the core fundamentals of
Java data and how to manipulate that data. In this chapter, we will focus on creating and
understanding the data itself, and in the next chapter, we will see how to manipulate and
respond to it.

We will also quickly recap on what we learned in the earlier chapters about Java, and then
dive into learning how to write our very own Java code. The principles we are about to
learn are not limited to Java but are applicable to other programming languages as well.

By the end of the chapter, you will be comfortable writing Java code that creates and uses
data within Android. This chapter takes you through the following topics:

• Understanding Java syntax and jargon

• Storing and using data with variables

• Using variables

Telegram Channel @IRFaraExam

182 Java Variables, Operators, and Expressions

• Changing values in variables with operators

• Trying out expressions

Let's learn some Java.

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2007.

Java is everywhere
The core Java fundamentals that we are about to learn apply when working within classes
that we inherit from (such as AppCompatActivity), as well as classes that we write
ourselves (as we will start to do in Chapter 10, Object-Oriented Programming).

As it is more logical to learn the basics before we write our own classes, we will be using
an extended Activity class, AppCompatActivity, to add some Java code in a mini
project. We will use the Log and Toast classes again to see the results of our coding in
the overridden onCreate method of the Activity class, to trigger the execution of our
code.

When however, we move on to Chapter 10, Object-Oriented Programming and start to
write our own classes, as well as understand more about how classes written by others
work, everything we have learned here will apply then too—in fact, all the Java that you
learn in this chapter and the next will apply, if you strip it out of the Activity class and
paste it into another Java environment, such as the following:

• Any of the major desktop operating systems

• Many modern TVs

• Sat nav

• Smart fridges

Java will work there too!

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2007
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2007
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2007

Understanding Java syntax and jargon 183

Calling all Java gurus
If you have already done some Java programming and understand the
following keywords (if, else, while, do while, switch, and
for), you can probably skip to Chapter 10, Object-Oriented Programming.
Alternatively, you might like to skim over this information as a refresher.

Let's get on with learning how to code in Java.

Understanding Java syntax and jargon
Throughout this book, we will use plain English to discuss some technical things. You will
never be asked to read a technical explanation of a Java or Android concept that has not
been previously explained in non-technical language.

So far, on a few occasions I have asked that you accept a simplified explanation to offer a
fuller explanation at a more appropriate time, as I have done with classes and methods.

Having said that, the Java and Android communities are full of people who speak in
technical terms, and to join in and learn from these communities, you need to understand
the terms they use. So, the approach this book takes is to learn a concept or appreciate an
idea using entirely plain-speaking language, but at the same time introduce the jargon/
technical term as part of the learning.

Java syntax is the way we put together the language elements of Java to produce code that
works in the Dalvik virtual machine (VM). The Java syntax is a combination of the words
we use and the formation of those words into sentence-like structures that make up our
code.

These Java "words" are many in number, but taken in small chunks are certainly easier to
learn than any human-spoken language. We call these words keywords.

I am confident that if you can read then you can learn Java, because learning Java is much
easier. What, then, separates someone who has finished an elementary Java course and an
expert programmer?

The exact same things that separate a student of language and a master poet. Expertise in
Java comes not in the number of Java keywords we know how to use but in the way we
use them. Mastery of the language comes through practice, further study, and using the
keywords more skillfully. Many consider programming an art as much as a science, and
there is some truth to this.

Telegram Channel @IRFaraExam

184 Java Variables, Operators, and Expressions

More code comments
As you become more advanced at writing Java programs, the solutions you use to create
your programs will become longer and more complicated. Furthermore, as we will see in
later chapters, Java was designed to manage complexity by having us divide up our code
into separate classes, very often across multiple files.

Code comments are parts of the Java program that do not have any function in
the program execution. A compiler ignores these comments. They serve to help a
programmer to document, explain, and clarify their code, to make it more understandable
to themselves later or to other programmers who might need to use or change it.

We have already seen a single-line comment. This is reproduced here:

// this is a comment explaining what is going on

The preceding comment begins with the two // forward-slash characters. The comment
ends at the end of the line. So, anything on that line is for humans only, whereas anything
on the next line (unless it's another comment) needs to be syntactically correct Java code,
as illustrated here:

// I can write anything I like here

but this line will cause an error

We can use multiple single-line comments, as illustrated here:

// Below is an important note

// I am an important note

// We can have as many single line comments like this as we
like

Single-line comments are also useful if we want to temporarily disable a line of code. We
can put // in front of the code and it will not be included in the program. Remember this
code, which tells Android to load our layout?

// setContentView(R.layout.activity_main);

In the preceding situation, the layout will not be loaded and the app will have a blank
screen when run, as the entire line of code is ignored by the compiler.

Important note
We saw this in Chapter 5, Beautiful Layouts with CardView and ScrollView,
when we temporarily commented out one of our methods.

Telegram Channel @IRFaraExam

Storing and using data with variables 185

There is another type of comment in Java, known as a multiline comment. A multiline
comment is useful for longer comments that span multiple lines and for adding things
such as copyright information at the top of a code file. As with a single-line comment, a
multiline comment can be used to temporarily disable code—in this case, usually across
multiple lines.

Everything in between the leading /* and the ending */ is ignored by the compiler. Here
are some examples:

/*

 You can tell I am good at this because my

 code has so many helpful comments in it.

*/

There is no limit to the number of lines in a multiline comment; which type of comment is
best to use will depend upon the situation. In this book, I will always explain every line of
code explicitly in the text, but you will often find liberally sprinkled comments within the
code itself that add further explanation, insight, or context. So, it's always a good idea to
read all the code thoroughly too.

/*

 The winning lottery numbers for next Saturday are

 9,7,12,34,29,22

 But you still want to make Android apps?

*/

Tip
All the best Java programmers liberally sprinkle their code with comments!

Storing and using data with variables
We can think of a variable as a named storage box. We choose a name, perhaps
variableA. These names are like our programmer's window into the memory of the
user's Android device.

Variables are values in memory, ready to be used or altered when necessary by using
their name.

Telegram Channel @IRFaraExam

186 Java Variables, Operators, and Expressions

Computer memory has a highly complex system of addressing, which fortunately we do
not need to interact with. Java variables allow us to devise our own convenient names for
all the data we need our program to work with. The Dalvik VM (DVM) will handle all the
technicalities to interact with the operating system, and the operating system will in turn
interact with the physical memory.

So, we can think of our Android device's memory as a huge warehouse, just waiting for
us to add our variables. When we assign names to our variables, they are stored in the
warehouse, ready for when we need them. When we use our variable's name, the device
knows exactly what we are referring to. We can then tell it to do things such as this:

• Assign a value to variableA

• Add variableA to variableB

• Test the value of variableB and take an action based on the result

• …and more, as we will soon see

In a typical app, we might have a variable named unreadMessages, perhaps to hold the
number of unread messages a user has. We could add to it when a new message arrives,
take away from it when the user reads a message, and show it to the user somewhere in
the app layout so that they know how many unread messages they have.

Here are some situations that might arise:

• A user gets three new messages, so add 3 to the value of unreadMessages.

• A user logs in to the app, so use Toast to display a message along with the value
stored in unreadMessages.

• A user sees that a bunch of messages are from someone they don't like, and deletes
six messages. We could then subtract 6 from unreadMessages.

These are arbitrary examples of names for variables, and if you don't use any of the
characters or keywords that Java restricts, you can actually call your variables whatever
you like.

In practice, however, it is best to adopt a naming convention so that your variable names
will be consistent. In this book, we will use a loose convention of variable names, starting
with a lowercase letter. When there is more than one word in the variable's name, the
second word will begin with an uppercase letter. This is called camel casing.

Telegram Channel @IRFaraExam

Storing and using data with variables 187

Here are some examples of this:

• unreadMessages

• contactName

• isFriend

Before we look at some real Java code with some variables, we need to first look at the
types of variables we can create and use.

Types of variables
It is not hard to imagine that even a simple app will have quite a few variables. In the
previous section, we introduced the unreadMessages variable as a hypothetical
example. What if an app has a list of contacts and needs to remember each of their names?
We might then need variables for each contact.

And what about when an app needs to know whether a contact is also a friend or just a
regular contact? We might need code that tests for friend status and then adds messages
from that contact into an appropriate folder so that the user knows if they were messages
from a friend or not.

Another common requirement in a computer program, including Android apps, is the
true or wrong false.

To cover this and many other types of data you might want to store or manipulate, Java
has types.

Primitive types
There are many types of variables, and we can even invent our own types as well. But for
now, we will look at the most used built-in Java types, and to be fair, they cover just about
every situation we are likely to run into for a while. Providing some examples is the best
way to explain types.

We have already discussed the hypothetical unreadMessages variable. This variable is
of course a number, so we have to tell the Java compiler this by giving it an appropriate
type.

On the other hand, the hypothetical contactName variable will of course hold the
characters that make up a contact's name.

Telegram Channel @IRFaraExam

188 Java Variables, Operators, and Expressions

The type that holds a regular number is called an int type, and the type that holds
name-like data is called a String type; and if we try to store a contact name in an int type
such as unreadMessages, meant for numbers, we will certainly run into trouble, as we
can see from the following screenshot:

Figure 7.1 – Storing contact name

As we can see, Java was designed to make it impossible for such errors to make it into a
running program.

Here are the main types of variables in Java:

• int: An int type is for storing integers, whole numbers. This type uses 32 pieces
(bits) of memory and can therefore store values a little in excess of 2 billion,
including negative values too.

• long: As the name hints at, long data types can be used when even larger
numbers are needed. A long type uses 64 bits of memory, and 2 to the power of
63 is what we can store in this. If you want to see what that looks like, here it is:
9,223,372,036,854,775,807. Perhaps surprisingly, there are uses for long variables,
but the point is that if a smaller variable will do, we should use it because our
program will use less memory.

Important note
You might be wondering when you might use numbers of this size. The obvious
examples would be math or science applications that do complex calculations,
but another use might be for timing. When you time how long something
takes, the Java Date class uses the number of milliseconds since January 1,
1970. A millisecond is one-thousandth of a second, so there have been quite a
few of them since 1970.

Telegram Channel @IRFaraExam

Storing and using data with variables 189

• float: This is for floating-point numbers—that is, numbers where there is
precision beyond the decimal point. As the fractional part of a number takes
memory space just as the whole-number part, the range of a number possible in a
float type is therefore decreased compared to non-floating-point numbers. So,
unless our variable will use the extra precision, float would not be our data type
of choice.

• double: When the precision in a float type is not enough, we have double.

• boolean: We will be using plenty of Booleans throughout the book. The boolean
variable type can be either true or false; nothing else. Booleans answer
questions such as the following:

Is the contact a friend?

Are there any new messages?

Are two examples for a Boolean enough?
• char: Store a single alphanumeric character in a char type. It's not going to change

the world on its own, but could be useful if we put lots of them together.

• short: This type is like a space-saving version of int. It can be used to store
whole numbers with both positive and negative values, and can have mathematical
operations performed on it. Where it differs from int is that it uses only 16 bits of
memory, which is just half the amount of memory compared to int. The downside
to short is that it can only store half the range of values compared to int, from
-32768 to 32767.

• byte: This type is like an even more space-saving version of short. It can be
used to store whole numbers with both positive and negative values, and can have
mathematical operations performed on it. Where it differs from int and short
is that it uses only 8 bits of memory, which is just half the amount of memory
compared to byte, and quarter the memory of int. The downside to byte is that
it can only store half the range of values compared to int, from -32768 to 32767.
Saving 8 or even 16 bits in total is unlikely to ever matter; however, if you needed
to store millions of whole numbers in a program, then short and byte are worth
considering.

Telegram Channel @IRFaraExam

190 Java Variables, Operators, and Expressions

Important note
I have kept this discussion on data types to a practical level that is useful in
the context of this book. If you are interested in how a data type's value is
stored and why the limits are what they are, then have a look at the Oracle Java
Tutorials site at http://docs.oracle.com/javase/tutorial/
java/nutsandbolts/datatypes.html. Note that you do not need
any more information than we have already discussed to continue with this
book.

As we just learned, each type of data that we might want to store will need a specific
amount of memory. For this reason, we must let the Java compiler know the type of the
variable before we begin to use it.

The variables described previously are known as primitive types. Most primitive types are
used throughout different programming languages (as well as keywords), so if you have a
good understanding of the types and keywords, then jumping into another language will
be far easier than the first time! These types use predefined amounts of memory, and so,
using our warehouse storage analogy, fit into predefined sizes of storage box.

As the "primitive" label suggests, they are not as sophisticated as reference types.

Reference types
You might have noticed that we didn't cover the String variable type we previously used
to introduce the concept of variables that hold alphanumeric data, such as a contact's
name.

Strings
Strings are one example of a special type of variable, known as a reference type. They
quite simply refer to a place in memory where storage of the variable begins, but the
reference type itself does not define a specific amount of memory. The reason for this is
straightforward: it's because we don't always know how much data will need to be stored
in it until the program is run.

We can think of Strings and other reference types as continually expanding and
contracting storage boxes. So, won't one of these String reference types bump into
another variable eventually?

Telegram Channel @IRFaraExam

Storing and using data with variables 191

As we are thinking about a device's memory as a huge warehouse full of racks of labeled
storage boxes, then you can think of a DVM as a super-efficient forklift truck driver that
puts the different types of storage boxes in the most appropriate place; and, if it becomes
necessary, the DVM will quickly move stuff around in a fraction of a second to avoid
collisions. Also, when required, Dalvik, the forklift truck driver, will even vaporize any
unneeded storage boxes.

This all happens at the same time as constantly unloading new storage boxes of all types
and placing them in the best place for that type of variable. Dalvik keeps reference
variables in a different part of the warehouse from primitive variables, and we will learn
more details about this in Chapter 12, The Stack, the Heap, and the Garbage Collector.

Strings can be used to store any keyboard character, like a char type but of almost
any length. Anything from a contact's name to an entire book can be stored in a single
String type. We will be using Strings regularly, including in this chapter.

There are a couple more reference types we will explore as well.

Arrays
Arrays are a way to store lots of variables of the same type, ready for quick and efficient
access. We will look at arrays in Chapter 15, Arrays, Maps, and Random Numbers.

Think of an array as an aisle in our warehouse, with all variables of a certain type lined up
in a precise order. Arrays are reference types, so Dalvik keeps these in the same part of the
warehouse as Strings. We might, for example, use an array to store dozens of contacts in.

Classes
Another reference type is the class type, which we have already discussed but not
explained properly. We will be getting familiar with classes in Chapter 10, Object-Oriented
Programming.

Now, we know that each type of data that we might want to store will require an amount
of memory. Hence, we must let the Java compiler know the type of the variable before we
begin to use it. We do this with a variable declaration.

Telegram Channel @IRFaraExam

192 Java Variables, Operators, and Expressions

Using variables
That's enough theory. Let's see how we would use our variables and types. Remember
that each primitive type needs a specific amount of real device memory. This is one of the
reasons why the compiler needs to know what type a variable will be.

Variable declaration
We must first declare a variable and its type before we try to do anything with it. To
declare a variable of type int with the name unreadMessages, we would type the
following:

int unreadMessages;

That's it—simply state the type (in this case, int), then leave a space and type the name
you want to use for this variable. Note also that the ; semicolon at the end of the line will
tell the compiler that we are done with this line and that what follows, if anything, is not
part of the variable declaration.

Similarly, for almost all the other variable types, the declaration would occur in the same
way. Here are some examples. The variable names in the examples are arbitrary. This is like
reserving a labeled storage box in a warehouse.

Have a look at the following code snippet:

long millisecondsElapsed;

float accountBalance;

boolean isFriend;

char contactFirstInitial;

String messageText;

Notice I said almost all the other variable types. One of the exceptions is variables of the
class type. We have already seen some code declaring variables of the class type. Do
you remember this code snippet from Chapter 3, Exploring Android Studio and the Project
Structure in the MainActivity.java file?

FloatingActionButton fab…

This edited snippet of code is declaring a variable called fab of type
FloatingActionButton. But we are off track a little, and will come back to classes in
Chapter 10, Object-Oriented Programming.

Telegram Channel @IRFaraExam

Using variables 193

Variable initialization
Initialization is the next step. Here, for each type, we initialize a value to the variable. This
is like placing a value inside a storage box in a warehouse.

unreadMessages = 10;

millisecondsElapsed = 1438165116841l;// 29th July 2016 11:19am

accountBalance = 129.52f;

isFriend = true;

contactFirstInitial = 'C';

messageText = "Hi reader, I just thought I would let you know
that Charles Babbage was an early computing pioneer and he
invented the difference engine. If you want to know more about
him, you can click find look here: www.charlesbabbage.net";

Notice that the char variable uses ' single quotes around the initialized value, while the
String type uses " double quotes.

We can also combine the declaration and initialization steps. Here, we declare and
initialize the same variables as we have previously, but in one step:

int unreadMessages = 10;

long millisecondsElapsed = 1438165116841l;//29th July 2016
11:19am

float accountBalance = 129.52f;

boolean isFriend = true;

char contactFirstInitial = 'C';

String messageText = " Hi reader, I just thought I would let
you know that Charles Babbage was an early computing pioneer
and he invented the difference engine. If you want to know more
about him, you can click this link www.charlesbabbage.net";

Whether we declare and initialize separately or together is dependent upon the specific
situation. The important thing is that we must do both at some point.

int a;

// That's me declared and ready to go!

// The line below attempts to output a to the console

Log.i("info", "int a = " + a);

// Oh no I forgot to initialize a!!

Telegram Channel @IRFaraExam

194 Java Variables, Operators, and Expressions

This would cause the following:

Compiler Error: Variable a might not have been initialized

There is a significant exception to this rule. In certain circumstances, variables can have
default values. We will see this in Chapter 10, Object-Oriented Programming; however, it is
good practice to both declare and initialize variables.

Changing values in variables with operators
Of course, in almost any program, we are going to need to "do things" with these variables'
values. We manipulate (change) variables with operators. Here is a list of perhaps the
most common Java operators that allow us to manipulate variables. You do not need to
memorize them as we will look at every line of code as and when we use them for the first
time. We have already seen the first operator when we initialized our variables, but we will
see it again, this time being a bit more adventurous.

The assignment operator
This is the assignment operator: =

It makes the variable to the left of the operator the same as the value to the right—for
example, like in this line of code:

unreadMessages = newMessages;

After the previous line of code has executed, the value stored in unreadMessages will
be the same as the value stored in newMessages.

The addition operator
This is the addition operator: +

It will add together values on either side of the operator and is usually used in conjunction
with the assignment operator. For example, it can add together two variables that have
numeric values, like in this next line of code:

 unreadMessages = newMessages + unreadMessages;

Once the previous code has executed the combined value of the values held by
newMessages and unreadMessages, this is now stored in unreadMessages. As
another example of the same thing, look at this line of code:

accountBalance = yesterdaysBalance + todaysDeposits;

Telegram Channel @IRFaraExam

Changing values in variables with operators 195

Important note
Notice that it is perfectly acceptable to use the same variable simultaneously on
both sides of an operator.

The subtraction operator
This is the subtraction operator: -

It will subtract the value on the right side of the operator from the value on the left. This is
usually used in conjunction with the assignment operator, as in this code example:

unreadMessages = unreadMessages - 1;

Or, as a similar example, it is used in this line of code:

accountBalance = accountBalance - withdrawals;

After the previous line of code has executed, accountBalance will hold its original
value minus whatever the value held in withdrawals is.

The division operator
This is the division operator: /

It will divide the number on the left by the number on the right. Again, it is usually used
in conjunction with the assignment operator. Here is an example line of code:

fairShare = numSweets / numChildren;

If in the previous line of code numSweets held nine sweets and numChildren held
three sweets, then fairShare will now hold the value of three sweets.

The multiplication operator
This is the multiplication operator: *

It will multiply variables and numbers together and, as with many of the other operators,
is usually used in conjunction with the assignment operator. For example, look at this line
of code:

answer = 10 * 10;

Telegram Channel @IRFaraExam

196 Java Variables, Operators, and Expressions

Alternatively, look at this line of code:

biggerAnswer = 10 * 10 * 10;

After the previous two lines of code have executed, answer holds the value 100 and
biggerAnswer holds the value 1000.

The increment operator
This is the increment operator: ++

The increment operator is a quick way to add one to something. For example, look at this
next line of code, which uses the addition operator:

myVariable = myVariable + 1;

The previous line of code has the same result as this much more compact code here:

 myVariable ++;

The decrement operator
This is the decrement operator: --

The decrement operator (as you probably guessed) is a quick way to subtract one from
something. For example, look at this next line of code, which uses the subtraction
operator:

myVariable = myVariable -1;

The previous line of code is the same as myVariable --;.

Important note
The formal names for these operators are slightly different from those
explained previously—for example, the division operator is one of the
multiplicative operators. But the names given previously are far more useful for
the purpose of learning Java, and if you used the term division operator while
conversing with someone from the Java community, they would know exactly
what you mean.

There are even more operators than this in Java. We will meet some of them in the next
chapter, when we learn about making decisions in Java.

Telegram Channel @IRFaraExam

Trying out expressions 197

Important note
If you are curious about operators, there is a complete list of them on the Oracle
Java Tutorials website, at http://docs.oracle.com/javase/
tutorial/java/nutsandbolts/operators.html. All the
operators needed to complete the projects in this book will be fully explained
in this book. The link is provided for the more curious among us.

Trying out expressions
Let's try using some declarations, assignments, and operators. When we bundle these
elements together into some meaningful syntax, we call this an expression. Let's write
a quick app to try some expressions out. We will then use Toast and Log to check our
results.

Expressing Yourself demo app
Create a new project called Expressing Yourself, use the Basic Activity project,
and leave all the other settings at their defaults. The completed code that we will write in
this project can be found in the Chapter 7/Expressing Yourself folder of the
download bundle.

Switch to the MainActivity.java tab in the editor, and we will write some code. In the
onCreate method, just before the } closing curly brace, add this code:

int numMessages;

Directly below the previous line of code, we will initialize a value to numMessages.

Next, add this line of code:

numMessages = 10;

Immediately after the previous line of code and before the }closing curly brace of
onCreate, add the following code:

// Output the value of numMessages

Log.i("numMessages = ", "" + numMessages);

numMessages++;

numMessages = numMessages + 1;

Log.i("numMessages = ", "" + numMessages);

// Now a boolean (just true or false)

Telegram Channel @IRFaraExam

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

198 Java Variables, Operators, and Expressions

boolean isFriend = true;

Log.i("isFriend = ", "" + isFriend);

// A contact and an important message

String contact = "James Gosling";

String message = "Dear reader, I invented Java.";

// Now let's play with those String variables

Toast.makeText(this, "Message from " + contact, Toast.LENGTH_
SHORT).show();

Toast.makeText(this, "Message is: " + message, Toast.LENGTH_
SHORT).show();

Important note
You will need to import the Toast and Log classes, as we have done
previously.

Run the app, and we can examine the output and then the code. In the logcat window, you
will see the following output:

numMessages =: 10

numMessages =: 12

isFriend =: true

On the screen, you will see two pop-up Toast messages. The first says Message from
James Gosling. The second says Message is:Dear reader, I invented Java. This is shown
in the following screenshot:

Figure 7.2 – The second pop-up Toast message

Telegram Channel @IRFaraExam

Trying out expressions 199

Let's step through the code and make sure that each line is clear before moving on.

First, we declared and initialized an int type variable called numMessages. We could
have done it on one line, but we did it like this:

int numMessages;

numMessages = 10;

Next, we used Log to output a message. Instead of simply typing the message between the
"" double quote marks, this time we used the + operator to add numMessages onto the
output, and as we saw in the console, the actual value of numMessages was output, as
follows:

// Output the value of numMessages

Log.i("numMessages = ", "" + numMessages);

Just to further prove that our numMessages variable is as versatile as it should be,
we used the ++ operator, which should have increased its value by 1 and then added
numMessages to itself, using + 1. We then output the new value of numMessages,
and indeed found its value has increased to 12 from 10, as illustrated in the following code
snippet:

numMessages ++;

numMessages = numMessages + 1;

Log.i("numMessages = ", "" + numMessages);

Next, we created a boolean-type variable called isFriend, and output that to the
console. We saw from the output that true was displayed. This variable type will fully
prove its usefulness when we look at decision making in the next section. The code is
illustrated in the following snippet:

// Now a boolean (just true or false)

boolean isFriend = true;

Log.i("isFriend = ", "" + isFriend);

After this, we declared and initialized two String-type variables, as follows:

// A contact and an important message

String contact = "James Gosling";

String message = "Dear reader, I invented Java.";

Telegram Channel @IRFaraExam

200 Java Variables, Operators, and Expressions

Finally, we output the String variables using Toast. We used a hardcoded part of
the "Message from " message, and added the variable part of the message with +
contact. We used the same technique to form the second Toast message as well.

Tip
When we add two Strings together to make a longer String type, this is
called concatenation.

// Now let's play with those String variables

Toast.makeText(this, "Message from " + contact, Toast.LENGTH_
SHORT).show();

Toast.makeText(this, "Message is:" + message, Toast.LENGTH_
SHORT).show();

Now, we can declare variables, initialize them to a value, change them around a bit, and
output them using Toast or Log.

Summary
At last, we have used some serious Java. We learned about variables, declaration, and
initialization. We saw how to use operators to change the value of variables. It's all right
if you don't remember everything straight away as we will constantly be using these
techniques and keywords throughout the book.

In the next chapter, let's look at how we can make decisions based on the values of these
variables and find out how this is useful to us.

Telegram Channel @IRFaraExam

8
Java Decisions

and Loops
We have just learned about variables and we know how we can change the values that they
hold with expressions, but how can we take a course of action dependent upon the value
of a variable?

We can certainly add the number of new messages to the number of previously unread
messages, but how might we, for example, trigger an action within our app when the user
has read all their messages?

The first problem is that we need a way to test the value of a variable and then respond
when the value falls within a range of values or is a specific value.

Another problem that is common in all forms of programming is that we need sections of
our code to be executed a certain number of times (more than once or sometimes not at
all) depending on the value of variables.

To solve the first problem, we will look at making decisions in Java with if, else, and
switch. To solve the latter, we will look at loops in Java with while, do while, for,
and break.

Telegram Channel @IRFaraExam

202 Java Decisions and Loops

Coming up in this chapter, we will cover the following:

• Making decisions with if, else, else if, and switch

• The switch demo app

• Java while loops and do while loops

• Java for loops

• Loops demo app

Let's learn some more Java.

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2008.

Making decisions in Java
Our Java code will constantly be making decisions. For example, we might need to know
whether the user has new messages or whether they have a certain number of friends. We
need to be able to test our variables to see whether they meet certain conditions and then
execute a certain section of code depending upon whether they do or not.

In this section, as our code gets more complicated, it helps to present it in a way that
makes it more readable. Let's look at code indenting to make our discussion about
decisions easier.

Indenting code for clarity
You have probably noticed that the Java code in our projects is indented. For example, the
first line of code inside the MainActivity class is indented by one tab. Also, the first
line of code is indented inside each method. Here is an annotated screenshot to make this
clear and as another quick example:

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2008
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2008
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2008

Making decisions in Java 203

Figure 8.1 – Indented Java code

Notice also that when the indented block has ended, often with a closing curly brace, },
the } is indented to the same extent as the line of code that began the block.

We do this to make the code more readable. It is not part of the Java syntax, however, and
the code will still compile if we don't do this.

As our code gets more complicated, indenting, along with comments, helps to keep the
meaning and structure of our code clear. I mention this now because when we start to
learn the syntax for making decisions in Java, indenting becomes especially useful and it is
recommended that you indent your code the same way.

Much of this indenting is done for us by Android Studio but not all of it.

Now we know how to present our code more clearly, let's learn about some more
operators, and then we can really get to work with making decisions with Java.

More operators
We can already add (+), take away (-), multiply (*), divide (/), assign (=), increment (++),
and decrement (--) with operators. Let's introduce some more useful operators, and then
we will go straight into actually understanding how to use them in Java.

Important Note
Don't worry about memorizing every operator that follows. Glance over them
and their explanations and then move quickly on to the next section. There,
we will put some operators to use and they will become much clearer as we see
a few examples of what they allow us to do. They are presented here in a list
so they are more convenient to refer back to when not intermingled with the
discussion about implementation that follows.

Telegram Channel @IRFaraExam

204 Java Decisions and Loops

We use operators to create an expression that is either true or false. We wrap that
expression in parentheses like this: (expression goes here).

The comparison operator
This is the comparison operator and it tests for equality; it is either true or false: ==

An expression such as (10 == 9), for example, is false. 10 is obviously not equal to 9.
However, an expression such as (2 + 2 == 4) is obviously true.

Note
Except in 1984 when 2 + 2 == 5 (https://en.wikipedia.org/
wiki/Nineteen_Eighty-Four).

The logical NOT operator
This is the logical NOT operator: !

It is used to test the negation of an expression. Negation means if the expression is false,
then the NOT operator causes the expression to be true. An example will help.

The expression (!(2 + 2 == 5)) evaluates to true because 2 + 2 is NOT 5. But a
further example of (!(2 + 2 = 4)) would be false. This is because 2 + 2 obviously is 4.

The NOT equal operator
This is the NOT equal operator and it is another comparison operator: !=

The NOT equal operator tests whether something is NOT equal. For example, the
expression (10 != 9) is true. 10 is not equal to 9. On the other hand, (10 != 10) is
false because 10 clearly is equal to 10.

The greater than operator
Another comparison operator (and there are a few more as well) is the greater than
operator. Here it is: >

This operator tests whether something is greater than something else. The expression (10
> 9) is true but the expression (9 > 10) is false.

The less than operator
You can probably guess that this operator tests for values being less than others. This is
what the operator looks like: <

Telegram Channel @IRFaraExam

https://en.wikipedia.org/wiki/Nineteen_Eighty-Four
https://en.wikipedia.org/wiki/Nineteen_Eighty-Four

Making decisions in Java 205

The expression (10 < 9) is false because 10 is not less than 9, while the expression (9
< 10) is true.

The greater than or equal to operator
This operator tests whether one value is greater than or equal to another and if either is
true, the result is true. This is what the operator looks like: >=

As an example, the expression (10 >= 9) is true, the expression (10 >= 10) is also
true, but the expression (10 >= 11) is false because 10 is neither greater than nor equal
to 11.

The less than or equal to operator
Like the previous operator, this one tests for two conditions but this time less than or
equal to. Look at the operator shown next and then we will see some examples: <=

The expression (10 <= 9) is false, the expression (10 <= 10) is true, and the
expression (10 <= 11) is also true.

The logical AND operator
This operator is known as logical AND. It tests two or more separate parts of an
expression and all parts must be true for the entire expression to be true: &&

Logical AND is usually used in conjunction with the other operators to build more
complex tests. The expression ((10 > 9) && (10 < 11)) is true because both parts
are true. On the other hand, the expression ((10 > 9) && (10 < 9)) is false because
only one part of the expression is true, (10 > 9), and the other is false, (10 < 9).

The logical OR operator
This operator is called logical OR and it is just like logical AND except that only one of
two or more parts of an expression needs to be true for the expression to be true: ||

Let's look at the last example we used for logical AND but switch the && for ||. The
expression ((10 > 9) || (10 < 9)) is now true because at least one part of the
expression is true.

Telegram Channel @IRFaraExam

206 Java Decisions and Loops

The modulus operator
This operator is called modulus (%). It returns the remainder of two numbers after
dividing them. For example, the expression (16 % 3 > 0) is true because 16 divided by
3 is 5 remainder 1 and 1 is, of course, greater than 0.

Seeing these operators in a more practical context in this chapter and throughout the rest
of the book will help clarify the different uses. Now we know how to form expressions
with operators, variables, and values. Next, we can look at a way of structuring and
combining expressions to make some deep decisions.

How to use all these operators to test variables
All these operators are virtually useless without a way of properly using them to make real
decisions that affect real variables and code.

Now we have all the information we need, we can look at a hypothetical situation, then
actually see some code for decision making.

Using the Java if keyword
As we saw, operators serve very little purpose on their own, but it was probably useful to
see just part of the wide and varied range available to us. Now, when we look at putting the
most common operator, ==, to use, we can start to see the powerful yet fine control that
operators offer us.

Let's make the previous examples less abstract. Meet the Java if keyword. We will use if
and a few conditional operators along with a small story to demonstrate their use. Next
follows a made-up military situation that will hopefully be less abstract than the previous
examples.

The captain is dying and, knowing that his remaining subordinates are not very
experienced, he decides to write a Java program to convey his last orders after he has died.
The troops must hold one side of a bridge while awaiting reinforcements – but with a few
rules that determine their actions.

The first command the captain wants to make sure his troops understand is this:

If they come over the bridge, shoot them.

Telegram Channel @IRFaraExam

Making decisions in Java 207

So, how do we simulate this situation in Java? We need a Boolean variable,
isComingOverBridge. The next bit of code assumes that the isComingOverBridge
variable has been declared and initialized to either true or false.

We can then use if like this:

if(isComingOverBridge){

 // Shoot them

}

If the isComingOverBridge Boolean is true, the code inside the opening and closing
curly braces will execute. If isComingOverBridge is false, the program continues
after the if block, without running the code within it.

Else do this instead

The captain also wants to tell his troops what to do if the enemy is not coming over the
bridge. In this situation, he wants them to stay where they are and wait.

Now we introduce another Java keyword, else. When we want to explicitly do something
when if does not evaluate to true, we can use else.

For example, to tell the troops to stay put if the enemy is not coming over the bridge, we
could write this code:

if(isComingOverBridge){

 // Shoot them

}else{

 // Hold position

}

The captain then realizes that the problem isn't as simple as he first thought. What if the
enemy comes over the bridge but has too many troops? His squad would be overrun and
slaughtered.

Telegram Channel @IRFaraExam

208 Java Decisions and Loops

So, he comes up with this code (we'll use some variables as well this time):

boolean isComingOverBridge;

int enemyTroops;

int friendlyTroops;

// Code that initializes the above variables one way or another

// Now the if

if(isComingOverBridge && friendlyTroops > enemyTroops){

 // shoot them

}else if(isComingOveBridge && friendlyTroops < enemyTroops) {

 // blow the bridge

}else{

 // Hold position

}

The preceding code has three possible paths of execution. The first is if the enemy is
coming over the bridge and the friendly troops are greater in number:

if(isComingOverBridge && friendlyTroops > enemyTroops)

The second is if the enemy troops are coming over the bridge but outnumber the friendly
troops:

else if(isComingOveBridge && friendlyTroops < enemyTroops)

Then, the third and final possible outcome that will execute if neither of the others is true
is captured by the final else without an if condition.

Telegram Channel @IRFaraExam

Making decisions in Java 209

Reader challenge
Can you spot a flaw with the preceding code? One that might leave a bunch
of inexperienced troops in complete disarray? The possibility of the enemy
troops and friendly troops being exactly equal in number has not been handled
explicitly and would therefore be handled by the final else, which is meant
for when there are no enemy troops. I guess any self-respecting captain would
expect his troops to fight in this situation and he could have changed the first
if statement to accommodate this possibility:

if(isComingOverBridge && friendlyTroops >=
enemyTroops)

Finally, the captain's last concern is that if the enemy comes over the bridge waving the
white flag of surrender and is promptly slaughtered, then his men would end up as war
criminals. The Java code needed is obvious. Using the wavingWhiteFlag Boolean
variable, he writes this test:

if (wavingWhiteFlag){

 // Take prisoners

}

But where to put this code is less clear. In the end, the captain opts for the following
nested solution and changes the test for wavingWhiteFlag to logical NOT, like this:

if (!wavingWhiteFlag){

 // not surrendering so check everything else

 if(isComingOverTheBridge && friendlyTroops >=

 enemyTroops){

 // shoot them

 }else if(isComingOverTheBridge && friendlyTroops <

 enemyTroops) {

 // blow the bridge

 }

Telegram Channel @IRFaraExam

210 Java Decisions and Loops

}else{

 // this is the else for our first if

 // Take prisoners

{

// Holding position

This demonstrates that we can nest if and else statements inside of one another to
create quite deep and detailed decisions.

We could go on making more and more complicated decisions with if and else but
what we have seen is more than sufficient as an introduction.

It is probably worth pointing out that very often there is more than one way to arrive at a
solution to a problem. The right way will usually be the way that solves the problem in the
clearest and simplest manner.

Let's look at some other ways to make decisions in Java, and then we can put them all
together in an app.

Switching to make decisions
We have seen the vast and virtually limitless possibilities of combining the Java operators
with if and else statements. But sometimes a decision in Java can be better made in
other ways.

When we are deciding based on a clear list of possibilities that don't involve complex
combinations, switch is usually the way to go.

We start a switch decision like this:

switch(argument){

}

Telegram Channel @IRFaraExam

Switching to make decisions 211

In the previous example, argument could be an expression or a variable. Within the
curly braces, {}, we can make decisions based on the argument with case and break
elements:

case x:

 // code for case x

 break;

case y:

 // code for case y

 break;

You can see in the previous example that each case states a possible result and each
break denotes the end of that case, as well as the point at which no further case
statements should be evaluated.

The first break encountered breaks out of the switch block to proceed with the next
line of code after the closing brace, }, of the entire switch block.

We can also use default without a value to run some code in case none of the case
statements evaluate to true, like this:

default:// Look no value

 // Do something here if no other case statements are

 true

 break;

Let's write a quick demo app that uses switch.

The switch demo app
To get started, create a new Android project called Switch Demo, use the Empty Activity
template, and leave all the other settings at their default. Switch to the MainActivity.
java file by left-clicking on the MainActivity.java tab above the editor and we can start
coding.

Telegram Channel @IRFaraExam

212 Java Decisions and Loops

Let's pretend we are writing an old-fashioned text adventure game, the kind of game
where the player types commands such as "Go East," "Go West," "Take Sword," and so on.

In this case, switch could handle that situation with something such as this example
code and we could use default to handle the player typing a command that is not
specifically handled.

Enter the following code in the onCreate method just before the closing curly brace, }:

// get input from user in a String variable called command

String command = "go east";

switch(command){

 case "go east":

 Log.i("Player: ", "Moves to the East");

 break;

 case "go west":

 Log.i("Player: ", "Moves to the West");

 break;

 case "go north":

 Log.i("Player: ", "Moves to the North");

 break;

 case "go south":

 Log.i("Player: ", "Moves to the South");

 break;

 case "take sword":

 Log.i("Player: ", "Takes the silver sword");

 break;

 // more possible cases

 default:

 Log.i("Message: ", "Sorry I don't speak Elfish");

Telegram Channel @IRFaraExam

214 Java Decisions and Loops

This can simply mean doing the same thing until the code being looped over (iterated)
prompts the loop to end. It could be a predetermined number of iterations as specified by
the loop code itself. It might be until a predetermined situation or condition is met. Or
it could be a combination of more than one of these things. Along with if, else, and
switch, loops are part of the Java control flow statements.

The code that executes when a condition is true is known as the conditional code. All the
types of loops we will discuss, with the exception of one (the do while loop), can be
illustrated by this simple diagram:

Figure 8.2 – The condition is tested when the loop is reached in the code

This diagram illustrates that when the loop is reached in the code, the condition is tested.
If the condition is true, the conditional code is executed. After the conditional code is
executed, the condition is tested again. Any time the condition is false, the code continues
after the loop. This could mean that the conditional code is never executed.

We will look at all the major types of loops that Java offers us to control our code and we
will use some of them to implement a working mini-app to make sure we understand
them completely. Let's look at the first and simplest loop type in Java, called the while
loop.

Telegram Channel @IRFaraExam

Repeating code with loops 215

while loops
Java while loops have the simplest syntax. Think back to the if statements for a
moment. We could put virtually any combination of operators and variables in the
conditional expression of the if statement. If the expression evaluates to true, then
the code in the body of the if block is executed. With the while loop, we also use an
expression that can evaluate to true or false. Look at this code:

int x = 10;

while(x > 0){

 x--;

 // x decreases by one each pass through the loop

}

What happens here is this:

1. Outside of the while loop, an int named x is declared and initialized to 10.

2. Then, the while loop begins. Its condition is x > 0. So, the while loop will
execute the code in its body.

3. The code in its body will continue to execute until the condition evaluates to false.

So, the previous code will execute 10 times.

On the first pass, x = 10, on the second pass it equals 9, then 8, and so on. But once x is
equal to 0, it is of course no longer greater than 0. At this point, the program will exit the
while loop and continue with the first line of code after the while loop.

Just like an if statement, it is possible that the while loop will not execute even once.
Look at this example where the code in the while loop will not execute:

int x = 10;

while(x > 10){

 // more code here.

 // but it will never run

 // unless x is greater than 10.

}

Telegram Channel @IRFaraExam

216 Java Decisions and Loops

Moreover, there is no limit to the complexity of the conditional expression or the amount
of code that can go in the loop body. Here is another example:

int newMessages = 3;

int unreadMessages = 0;

while(newMessages > 0 || unreadMessages > 0){

 // Display next message

 // etc.

}

// continue here when newMessages and unreadMessages equal 0

The preceding while loop would continue to execute until both newMessages and
unreadMessages are equal to or less than 0. As the condition uses the logical OR
operator, ||, either one of those conditions being true will cause the while loop to
continue executing.

It is worth noting that once the body of the loop has been entered, it will always complete
even if the expression evaluates to false partway through, as it is not tested again until the
code tries to start another pass. Take the following example:

int x = 1;

while(x > 0){

 x--;

 // x is now 0 so the condition is false

 // But this line still runs

 // and this one

 // and me!

}

Telegram Channel @IRFaraExam

Repeating code with loops 217

The preceding loop body will execute exactly once. We can also set a while loop that will
run forever! This perhaps unsurprisingly is called an infinite loop. Here is an example of
an infinite loop:

int x = 0;

while(true){

 x++; // I am going to get very big!

}

Breaking out of a loop
We might use an infinite loop like this so that we can decide when to exit the loop from a
test contained within its body. We would do this by using the break keyword when we
are ready to leave the loop's body. Here is an example:

int x = 0;

while(true){

 x++; //I am going to get very big!

 break; // No, you're not- ha!

 // code doesn't reach here

}

You might have been able to guess that we can combine any of the decision-making tools
such as if, else, and switch within our while loops and all the rest of the loops we
will look at in a minute. Take the following example:

int x = 0;

int tooBig = 10;

while(true){

 x++; // I am going to get very big!

 if(x == tooBig){

 break;

 } // No, you're not- ha!

 // code reaches here only until x = 10

}

Telegram Channel @IRFaraExam

218 Java Decisions and Loops

It would be simple to go on for many more pages demonstrating the versatility of while
loops but at some point, we want to get back to doing some real programming. So here is
one last concept combined with while loops.

The continue keyword
The continue keyword acts in a similar way to break – up to a point. The continue
keyword will break out of the loop body but will also check the condition expression
afterward so the loop can run again. An example will help:

int x = 0;

int tooBig = 10;

int tooBigToPrint = 5;

while(true){

 x++; // I am going to get very big!

 if(x == tooBig){

 break;

 } // No, you're not- ha!

 // code reaches here only until x = 10

 if(x >= tooBigToPrint){

 // No more printing but keep looping

 continue;

 }

 // code reaches here only until x = 5

 // Print out x

}

do while loops
A do while loop is very much the same as while loops with the exception that a
do while loop evaluates its expression after the body. Look at this modification of the
previous figure that represents the flow of a do while loop:

Telegram Channel @IRFaraExam

Repeating code with loops 219

Figure 8.3 – do while loop

This means that a do while loop will always execute the conditional code at least once
before checking the loop condition:

int x= 1

do{

 x++;

}while(x < 1);

// x now = 2

In the previous code, the loop was executed even though the test was false because the test
is done after the execution of the loop. The test did, however, prevent the loop body from
being executed a second time. This caused x to be incremented once and x now equals 2.

Important Note
Note that break and continue can also be used in do while loops.

The next type of loop we will cover is the for loop.

Telegram Channel @IRFaraExam

220 Java Decisions and Loops

for loops
A for loop has a slightly more complicated syntax than the while or do while loops
as it takes three parts to initialize. Have a look at the code first, then we will break it apart:

for(int i = 0; i < 10; i++){

 //Something that needs to happen 10 times goes here

}

The slightly more complicated form of the for loop is clearer when put like this:

for(declaration and initialization; condition; change after
each pass through loop).

To clarify further, we have the following:

• declaration and initialization: We create a new int variable, i, and
initialize it to 0.

• condition: Just like the other loops, it refers to the condition that must evaluate
to true for the loop to continue.

• change after each pass through the loop: In the example, i++
means that 1 is added/incremented to i on each pass. We could also use i-- to
reduce/decrement i at each pass:

for(int i = 10; i > 0; i--){

 // countdown

}

// blast off i = 0

Important Note
Note that break and continue can also be used in for loops.

The for loop takes control of initialization, condition evaluation, and the modification of
the variable.

Telegram Channel @IRFaraExam

Loops demo app 221

Loops demo app
To get started, create a new Android project called Loops, use the Empty Activity
template, and leave all the other settings at their default.

Let's add a few buttons to our UI to make this more fun. Switch to the activity_main.
xml file and make sure you are on the Design tab, and then follow these steps:

1. Drag a button onto the UI and center it horizontally near the top.

2. In the properties window, change the text property to Count Up.

3. In the properties window, change the onClick property to countUp.

4. Place a new button just below the previous one and repeat steps 2 and 3 but this time
use Count Down for the text property and countDown for the onClick property.

5. Place a new button just below the previous one and repeat steps 2 and 3 but this
time use nested for the text property and the onClick property.

6. Click the Infer Constraints button to constrain the three buttons in position.

Looks are not important for this demo but run the app and check that the layout looks
something like in the following screenshot:

Figure 8.4 – Buttons added to the UI

Telegram Channel @IRFaraExam

222 Java Decisions and Loops

Important Note
I also deleted the "Hello World!" TextView but this is not necessary.

What is important is that we have three buttons labeled COUNT UP, COUNT
DOWN, and NESTED, which call methods named countUp, countDown, and nested,
respectively.

Switch to the MainActivity.java file by left-clicking the MainActivity.java tab above
the editor and we can start coding our methods.

After the closing curly brace of the onCreate method, add the countUp method shown
next:

public void countUp(View v){

 Log.i("message:","In countUp method");

 int x = 0;

 // Now an apparently infinite while loop

 while(true){

 // Add 1 to x each time

 x++;

 Log.i("x =", "" + x);

 if(x == 3){

 // Get me out of here

 break;

 }

 }

}

Important Note
Import the Log and View classes using your preferred method:

import android.util.Log;

import android.view.View;

Telegram Channel @IRFaraExam

Loops demo app 223

We will be able to call this method we have just written from the appropriately labeled
button.

After the closing curly brace of the countUp method, add the countDown method:

public void countDown(View v){

 Log.i("message:","In countDown method");

 int x = 4;

 // Now an apparently infinite while loop

 while(true){

 // Add 1 to x each time

 x--;

 Log.i("x =", "" + x);

 if(x == 1){

 // Get me out of here

 break;

 }

 }

}

We will be able to call this method we have just written from the appropriately labeled
button.

After the closing curly brace of the countDown method, add the nested method:

public void nested(View v){

 Log.i("message:","In nested method");

 // a nested for loop

 for(int i = 0; i < 3; i ++){

 for(int j = 3; j > 0; j --){

 // Output the values of i and j

 Log.i("i =" + i,"j=" + j);

 }

Telegram Channel @IRFaraExam

224 Java Decisions and Loops

 }

}

We will be able to call this method we have just written from the appropriately labeled
button.

Now, let's run the app and start tapping buttons. If you tap each of the buttons once from
top to bottom, this is the console output you will see:

message:: In countUp method

x =: 1

x =: 2

x =: 3

message: : In countDown method

x =: 3

x =: 2

x =: 1

message: : In nested method

i =0: j=3

i =0: j=2

i =0: j=1

i =1: j=3

i =1: j=2

i =1: j=1

i =2: j=3

i =2: j=2

i =2: j=1

We can see that the countUp method does exactly that. The int x variable is initialized
to 0, an infinite while loop is entered, and x is incremented with the increment ++
operator. Fortunately, on each iteration of the loop, we test for x being equal to 3 with if
(x == 3) and break when this is true.

Next, in the countDown method, we do the same in reverse. The int x variable
is initialized to 4, an infinite while loop is entered, and x is decremented with the
decrement -- operator. This time, on each iteration of the loop, we test for x being equal
to 1 with if (x == 1) and break when this is true.

Telegram Channel @IRFaraExam

Summary 225

Finally, we nest two for loops within each other. We can see from the output that each
time i (which is controlled by the outer loop) is incremented, j (which is controlled by
the inner loop) is decremented from 3 to 1. Look carefully at this screenshot, which shows
where the start and end of each for loop is, to help fully understand this:

Figure 8.5 – for loop

You can, of course, keep tapping to observe each button's output for as long as you like. As
an experiment, try making the loops longer, perhaps 1000.

With loops thoroughly learned and tested, let's look at the finer details of methods in the
next chapter.

Summary
In this chapter, we learned how to use if, else, and switch to make decisions with
expressions and branch our code. We saw and practiced while, for, and do while to
repeat parts of our code. Then we put it all together in two quick demo apps.

In the next chapter, we will take a much closer look at Java methods, which is where all
our code will go.

Telegram Channel @IRFaraExam

Telegram Channel @IRFaraExam

9
Learning Java

Methods
As we are starting to get comfortable with Java programming, in this chapter we will take
a closer look at methods because although we know that you can call them to make them
execute their code, there is more to them than we have discussed so far.

In this chapter, we will look at the following:

• Method structure

• Method overloading versus overriding

• A method demo mini-app

• How methods affect our variables

• Method recursion

First, let's go through a quick method recap.

Telegram Channel @IRFaraExam

228 Learning Java Methods

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2009.

Methods revisited
This figure sums up where our understanding of methods is at the moment:

Figure 9.1 – Understanding methods

As we can see in the figure, there are still a couple of question marks around methods.
We will totally take the lid off methods and see how they work and what exactly the
other parts of the method are doing later in the chapter. In Chapter 10, Object-Oriented
Programming, and Chapter 11, More Object-Oriented Programming, we will clear up the
last few parts of the mystery of methods while discussing object-oriented programming.

What exactly are Java methods?
A method is a collection of variables, expressions, and control flow statements bundled
together inside an opening and closing curly brace preceded by a signature. We have
already been using lots of methods, but we just haven't looked very closely at them yet.

Let's start with the method structure.

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2009
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2009
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2009

Method structure 229

Method structure
The first part of a method that we write is called the signature. Here is a hypothetical
method signature:

public boolean addContact(boolean isFriend, string name)

If we add an opening and closing pair of curly braces, {}, with some code that the method
performs, then we have a complete method – a definition. Here is another made up yet
syntactically correct method:

private void setCoordinates(int x, int y){

 // code to set coordinates goes here

}

As we have seen, we could then use our new method from another part of our code like
this:

// I like it here

setCoordinates(4,6);// now I am going off to setCoordinates
method

// Phew, I'm back again - code continues here

At the point where we call the setCoordinates method, our program's execution
would branch to the code contained within that method. The method would execute all
the statements inside it, step by step, until it reaches the end, and then return control
to the code that called it, or sooner if it hits a return statement. Then, the code would
continue running from the first line after the method call.

Here is another example of a method complete with the code to make the method return
to the code that called it:

int addAToB(int a, int b){

 int answer = a + b;

 return answer;

}

The call to use the preceding method could look like this:

int myAnswer = addAToB(2, 4);

Telegram Channel @IRFaraExam

230 Learning Java Methods

Clearly, we don't need to write methods to add two int variables together, but the
example helps us see a little more into the workings of methods. First, we pass in the
values 2 and 4. In the method signature, the value 2 is assigned to int a and the value 4
is assigned to int b.

Within the method body, the variables a and b are added together and used to initialize
the new variable, int answer. The line return answer returns the value stored in
answer to the calling code, causing myAnswer to be initialized with the value 6.

Notice that each of the method signatures in the preceding examples varies a little. The
reason for this is the Java method signature is quite flexible, allowing us to build exactly
the methods we need.

Exactly how the method signature defines how the method must be called and how the
method must return a value deserves further discussion.

Let's give each part of the signature a name so we can break it up into pieces and learn
about the parts.

The following bolded text is a method signature with its parts labeled up ready for
discussion. Also, have a look at the table that follows the bolded text to further clarify
which part of the signature is which. This will make the rest of our discussion on methods
straightforward:

modifier | return-type | name of method (parameters)

Modifier
In our earlier examples, we only used a modifier in a couple of examples, partly because
the method doesn't have to use a modifier. The modifier is a way of specifying what code
can use (call) your method, by using modifiers such as public and private.

Telegram Channel @IRFaraExam

Method structure 231

Variables can have modifiers too, as follows:

// Most code can see me

public int a;

// Code in other classes can't see me

private String secret = "Shhh! I am private";

Modifiers (for methods and variables) are an essential Java topic, but they are best dealt
with when we are discussing the other vital Java topic we have skirted around a few times
already – classes. We will do so in the next chapter.

Return type
Next in the table is the return type. Like a modifier, a return type is optional. So, let's look
at it a bit closer. We have seen that our methods do anything we can code in Java. But what
if we need the results from what a method has done? The simplest example of a return
type we have seen so far is as follows:

int addAToB(int a, int b){

 int answer = a + b;

 return answer;

}

Here, the return type in the signature is highlighted. The return type is an int. The
addAToB method sends back (returns) to the code that called it a value that will fit in an
int variable.

The return type can be any Java type we have seen so far. However, the method does not
have to return a value at all. When the method does not return a value, the signature must
use the void keyword as the return type. When the void keyword is used, the method
body must not try to return a value as this will cause a compiler error. It can, however, use
the return keyword without a value.

Telegram Channel @IRFaraExam

232 Learning Java Methods

Here are some combinations of the return type and use of the return keyword that
are valid:

void doSomething(){

 // our code

 // I'm done going back to calling code here

 // no return is necessary

}

Another combination is as follows:

void doSomethingElse(){

 // our code

 // I can do this as long as I don't try and add a value

 return;

}

The following code is yet another combination:

void doYetAnotherThing(){

 // some code

 if(someCondition){

 // if someCondition is true returning to calling

 code

 // before the end of the method body

 return;

 }

 // More code that might or might not get executed

 return;

 /*

 As I'm at the bottom of the method body

 and the return type is void, I'm

 really not necessary but I suppose I make it

Telegram Channel @IRFaraExam

Method structure 233

 clear that the method is over.

 */

}

String joinTogether(String firstName, String lastName){

 return firstName + lastName;

}

We could call each of the preceding methods in turn like this:

// OK time to call some methods

doSomething();

doSomethingElse();

doYetAnotherThing();

String fullName = joinTogether("Alan ","Turing")

// fullName now = Alan Turing

// continue with code from here

The preceding code would execute all the code in each method in turn.

Name of the method
Next in the table is the name of the method. When we design our own methods, the
method name is arbitrary. But it is the convention to use verbs that clearly explain what
the method will do. Also, use the convention of the first letter of the first word of the name
being lowercase and the first letter of any later words being uppercase. This is called camel
case, as we learned while learning about variable names. Consider this next example:

void XGHHY78802c(){

 // code here

}

Telegram Channel @IRFaraExam

234 Learning Java Methods

The preceding method is perfectly legitimate and will work; however, let's look at three
much clearer examples that use these conventions:

void doSomeVerySpecificTask(){

 // code here

}

void getMyFriendsList(){

 // code here

}

void startNewMessage(){

 // code here

}

This is much clearer as the names make it obvious what the methods will do.

Let's have a look at the parameters in methods.

Parameters
The final topic in the table is parameters. We know that a method can return a result to
the calling code. But what if we need to share some data values from the calling code with
the method?

Parameters allow us to send values into the called method. We have already seen an
example with parameters when we looked at return types. We will look at the same
example but a little more closely at the parameters:

int addAToB(int a, int b){

 int answer = a + b;

 return answer;

}

Here, the parameters are highlighted. Parameters are contained in parentheses,
(parameters go here), immediately after the method name.

Telegram Channel @IRFaraExam

Method structure 235

Notice that in the first line of the method body, we use a + b as if they are already
declared and initialized variables. That is because they are. The parameters of the method
signature are their declaration and the code that calls the method initializes them, as
highlighted in the next line of code:

int returnedAnswer = addAToB(10,5);

Also, as we have partly seen in earlier examples, we don't have to just use int in our
parameters. We can use any Java type, including types we design ourselves.

What is more, we can mix and match types as well. We can also use as many parameters as
is necessary to solve our problem. An example might help:

void addToAddressBook(char firstInitial,

String lastName,

String city,

int age){

 /*

 all the parameters are now living, breathing,

 declared and initialized variables.

 The code to add details to address book goes here.

 */

}

The preceding example would have four declared and initialized variables that are ready
to use.

Now we will look at the method body – what goes inside the method.

The body
In our previous examples, we have been pseudo-coding our method bodies with
comments such as the following:

// code here

The following has also been used:

// some code

Telegram Channel @IRFaraExam

236 Learning Java Methods

The addToAddressBook method has also been used:

/*

 all the parameters are now living, breathing,

 declared and initialized variables.

 The code to add details to address book goes

 here.

 */

But we know exactly what to do in the body already. Any Java syntax we have learned
about so far will work in the body of a method. In fact, if we think back, all the code we
have written in this book so far has been in a method.

The best thing we can do next is to write a few methods that do something in the body.

Using method demo apps
Here we will quickly build two apps to explore methods a bit further. First, we will explore
the fundamentals with the Real World Methods app, and then we will glimpse a new
topic, method overloading, with the Exploring Method Overloading app.

As usual, you can open the ready-typed code files in the usual way. The next two examples
of methods can be found in the download bundle in the chapter 9 folder and the Real
World Methods and Exploring Method Overloading sub-folders.

Real-world methods
First, let's make ourselves some simple working methods complete with return type
parameters and fully functioning bodies.

To get started, create a new Android project called Real World Methods, use the
Empty Activity template, and leave all the other settings at their default. Switch to the
MainActivity.java file by left-clicking the MainActivity.java tab above the editor
and we can start coding.

First, add these three methods to the MainActivity class. Add them just after the
closing curly brace, }, of the onCreate method:

String joinThese(String a, String b, String c){

 return a + b + c;

}

Telegram Channel @IRFaraExam

Using method demo apps 237

float getAreaCircle(float radius){

 return 3.141f * radius * radius;

}

void changeA(int a){

 a++;

}

The first method we added is called joinThese. It will return a String value and needs
three String variables passed into it. In the method body, there is only one line of code.
The return a + b + c code will concatenate the three strings that are passed into it
and return the joined strings as the result.

The next method, named getAreaCircle, takes a float variable as an argument and
then returns a float variable too. The body of the method simply uses the formula for
the area of a circle, incorporating the passed-in radius, and then returns the answer to the
calling code. The odd-looking f on the end of 3.141 is to let the compiler know that the
number is of the float type. Any floating-point number is assumed to be of the double
type unless it has the trailing f.

The third and final method is the simplest of all the methods. Notice that it doesn't return
anything; it has a void return type. We have included this method to make clear an
important point that we want to remember about methods. But let's see it in action before
we talk about it.

Now, in the onCreate method, after the call to the setContentView method, add
this code, which calls our three new methods and then outputs some text to the logcat
window:

String joinedString = joinThese("Methods ", "are ", "cool ");

Log.i("joinedString = ","" + joinedString);

float area = getAreaCircle(5f);

Log.i("area = ","" + area);

int a = 0;

changeA(a);

Log.i("a = ","" + a);

Telegram Channel @IRFaraExam

238 Learning Java Methods

Run the app and see the output in the logcat window, which is provided here for your
convenience:

joinedString =: Methods are cool

area =: 78.525

a =: 0

In the logcat output, the first thing we can see is the value of the joinedString
string. As expected, it is the concatenation of the three words we passed into the
joinThese method.

Next, we can see that getAreaCircle has indeed calculated and returned the area of a
circle based on the length of the radius passed in.

The fact that the a variable still holds the value 0 even after it has been passed into the
changeA method deserves a separate discussion.

Discovering variable scope
The final line of output is most interesting: a=: 0. In the onCreate method, we
declared and initialized int a to 0, and then we called the changeA method. In the
body of changeA, we incremented a with the code a++. Yet, back in the onCreate
method, we see that when we use the Log.i method to print the value of a to the logcat
window, it is still 0.

So, when we passed in a to the changeA method, we were actually passing the value
stored in a not the actual variable a. This is referred to as passing by value in Java.

Tip
When we declare a variable in a method, it can only be seen in that method.
When we declare a variable in another method, even if it has the exact same
name, it is not the same variable. A variable only has scope within the method
it was declared.

With all primitive variables, this is how passing them to methods works. With reference
variables, it works slightly differently and we will see how in the next chapter.

Telegram Channel @IRFaraExam

Exploring method overloading 239

Important Note
I have talked about this scope concept with a number of people new to Java.
To some, it seems blindingly obvious, even natural. To others, however, it is
a cause of constant confusion. Should you fall into the latter category, don't
worry, because we will talk a bit more about this later in this chapter, and in
future chapters, we will go into greater depth with exploring scope and make
sure it is no longer an issue.

Let's look at another practical example of methods and learn something new at the
same time.

Exploring method overloading
As we are beginning to realize, methods are quite deep as a topic. But hopefully, by taking
them a step at a time, we will see that they are not daunting in any way. We will also be
returning to methods in the next chapter. For now, let's create a new project to explore the
topic of method overloading.

Create a new Empty Activity template project called Exploring Method
Overloading, then we will get on with writing three methods, but with a slight twist.

As we will soon see, we can create more than one method with the same name provided
that the parameters are different. The code in this project is simple. It is how it works that
might appear slightly curious until we analyze it after.

In the first method, we will simply call it printStuff and pass in an int variable via a
parameter to be printed.

Insert this method after the closing } of the onCreate method but before the closing }
of the MainActivity class. Remember to import the Log class in the usual way:

void printStuff(int myInt){

 Log.i("info", "This is the int only version");

 Log.i("info", "myInt = "+ myInt);

}

In this second method, we will also call it printStuff but pass in a String variable to
be printed. Insert this method after the closing } of the onCreate method but before the
closing } of the MainActivity class:

void printStuff(String myString){

 Log.i("info", "This is the String only version");

Telegram Channel @IRFaraExam

240 Learning Java Methods

 Log.i("info", "myString = "+ myString);

}

In this third method, we will call it printStuff yet again but pass in a String variable
and an int value to be printed. Insert this method after the closing } of onCreate but
before the closing } of the MainActivity class:

void printStuff(int myInt, String myString){

 Log.i("info", "This is the combined int and String

 version");

 Log.i("info", "myInt = "+ myInt);

 Log.i("info", "myString = "+ myString);

}

Finally, insert this code just before the closing } of the onCreate method to call the
methods and print some values to the logcat window:

// Declare and initialize a String and an int

int anInt = 10;

String aString = "I am a string";

// Now call the different versions of printStuff

// The name stays the same, only the parameters vary

printStuff(anInt);

printStuff(aString);

printStuff(anInt, aString);

Now we can run the app on the emulator or a real device. Here is the output:

Info: This is the int only version

Info: myInt = 10

Info: This is the String only version

Info: myString = I am a string

Info: This is the combined int and String version

Info: myInt = 10

Info: myString = I am a string

As you can see, Java has treated three methods with the same name as different methods.
This, as we have just shown, can be useful. It is called method overloading.

Telegram Channel @IRFaraExam

Exploring method overloading 241

Method overloading and overriding confusion
Overloading is when we have more than one method with the same name but
different parameters.

Overriding is when we replace a method with the same name and the same
parameter list.

We know enough about overloading and overriding to complete this book;
but if you are brave and your mind is wandering, yes, you can override an
overloaded method, but that is something for another time.

This is how it all works. In each of the steps where we wrote code, we created a method
called printStuff. But each printStuff method has different parameters, so each is
actually a different method that can be called individually:

void printStuff(int myInt){

 ...

}

void printStuff(String myString){

 ...

}

void printStuff(int myInt, String myString){

 ...

}

The body of each of the methods is trivial and just prints out the passed-in parameters and
confirms which version of the method is being called.

The next important part of our code is when we make it plain which version of the
method we mean to call by using the specific arguments that match the parameters in the
signature. In the final step, we call each method in turn, using the matching parameters so
that Java knows the exact method required:

printStuff(anInt);

printStuff(aString);

printStuff(anInt, aString);

Telegram Channel @IRFaraExam

242 Learning Java Methods

We now know all we need to know about methods, so let's take a quick second look at the
relationship between methods and variables. Then, we'll get our heads around this scope
phenomenon a bit more.

Scope and variables revisited
You might remember in the Real World Methods project the slightly disturbing
anomaly was that variables in one method were not apparently the same as those from
another even if they do have the same name. If you declare a variable in a method,
whether that is one of the life cycle methods or one of our own methods, it can only be
used within that method.

It is no use if we do this in onCreate:

int a = 0;

And then, following that, we try to do this in onPause or some other method:

a++;

We will get an error because a is only visible within the method it was declared. At first,
this might seem like a problem, but surprisingly, it is actually an especially useful feature
of Java.

I have already mentioned that the term used to describe this is scope. A variable is
said to be in scope when it is usable and out of scope when it is not. The topic of scope
is best discussed along with classes, and we will do so in Chapter 10, Object-Oriented
Programming, and Chapter 11, More Object-Oriented Programming, but as a sneak look at
what lies ahead, you might like to know that a class can have its very own variables and
when it does, they have scope for the whole class; that is, all its methods can "see" and use
them. We call them member variables or fields.

To declare a member variable, you simply use the usual syntax after the start of the class,
outside of any method declared in the class. Say our app started like this:

public class MainActivity extends AppCompatActivity {

 int mSomeVariable = 0;

 // Rest of code and methods follow as usual

 // ...

Telegram Channel @IRFaraExam

Method recursion 243

We could use mSomeVariable anywhere, inside any method in this class. Our new
variable, mSomeVariable, has class scope. We append an m to the variable name simply
to remind us when we see it that it is a member variable. This is not required by the
compiler, but it is a useful convention.

Let's look at one more method topic before we move on to classes.

Method recursion
Method recursion is when a method calls itself. This might at first seem like
something that happens by mistake but is an efficient technique for solving some
programming problems.

Here is some code that shows a recursive method in its most basic form:

void recursiveMethod() {

 recursiveMethod();

}

If we call the recursiveMethod method, its only line of code will then call itself, which
will then call itself, which will then call itself, and so on. This process will go on forever
until the app crashes, giving the following error in Logcat:

java.lang.StackOverflowError: stack size 8192KB

When the method is called, its instructions are moved to an area of the processor called
the stack, and when it returns, its instructions are removed. If the method never returns
and yet more and more copies of the instructions are added, eventually the stack will run
out of memory (or overflow) and we get StackOverflowError.

Telegram Channel @IRFaraExam

244 Learning Java Methods

We can attempt to visualize the first four method calls using the next screenshot. Also, in
the next screenshot, I have crossed out the call to the method to show that if we were able
to, at some point, prevent the method call, eventually all the methods would return and be
cleared from the stack:

Figure 9.2 – Method calls

To make our recursive methods worthwhile, we need to enhance two aspects. We will
look at the second aspect shortly. First and most obviously, we need to give it a purpose.
How about we ask our recursive method to sum (add up) the values of numbers in a range
from 0 to a given target value, say 10, 100, or more? Let's modify the preceding method by
giving it this new purpose and renaming it accordingly. We will also add a variable with
class scope (outside the method) called answer:

int answer = 0;

void computeSum(int target) {

answer += target;

 computeSum(target-1);

}

Telegram Channel @IRFaraExam

Method recursion 245

Now we have a method called computeSum that takes an int as a parameter. If we
wanted to compute the sum of all the digits between 0 and 10, we could call the method
like this:

computeSum(10);

Here are the values of the answer variable at each function call:

First call of computeSum: answer = 10

Second call of computeSum: answer = 19

…

Tenth call of computeSum: answer = 55

Apparent success – until you realize that the method continues to call itself beyond
the target variable reaching 0. In fact, we still have the same problem as our first
recursive method and after tens of thousands of method calls, the app will crash with
StackOverflowError again.

What we need is a way to stop the method calling itself once target is equal to 0. The
way we solve this problem is to check whether the value of target is 0 and if it is, we quit
calling the method. Have a look at the additional highlighted code shown next:

void computeSum(int target) {

 answer += target;

 if(target > 0) {

 Log.d("target = ", "" + target);

 computeSum(target - 1);

 }

 Log.d("answer = ", "" + answer);

We have used an if statement to check whether the target variable is greater than 0. We
also have an additional Log.d code to output the value of answer when the method
has been called for the last time. See whether you can work out what is happening before
reading the explanation following the output.

The output of calling computeSum(10) would be as follows:

target =: 10

target =: 9

target =: 8

target =: 7

Telegram Channel @IRFaraExam

246 Learning Java Methods

target =: 6

target =: 5

target =: 4

target =: 3

target =: 2

target =: 1

answer =: 55

if(target > 0) tells the code to first check whether the target variable is above 0.
If it is, only then does it call the method again and pass in the value of target – 1. If it
isn't, then it stops the whole process.

Important Note
We won't be using method recursion in this book, but it is an interesting
concept to understand.

We know more than enough about methods to complete all the projects in the book. Let's
have a quick recap with some questions and answers.

Questions
1. What is wrong with this method definition?

doSomething(){

 // Do something here

}

No return type is declared. You do not have to return a value from a method, but its
return type must be void in this case. This is how the method should look:

void doSomething(){

 // Do something here

}

Telegram Channel @IRFaraExam

Summary 247

2. What is wrong with this method definition?

float getBalance(){

 String customerName = "Linus Torvalds";

 float balance = 429.66f;

 return userName;

}

The method returns a string (userName) but the signature states that it must
return a float type. With a method name like getBalance, this code is what
was likely intended:

float getBalance(){

 String customerName = "Linus Torvalds";

 float balance = 429.66f;

 return balance;

}

3. When do we call the onCreate method? (Trick question alert!)

We don't. Android decides when to call the onCreate method, as well as all
the other methods that make up the lifecycle of an Activity. We just override the
ones that are useful to us. We do, however, call super.onCreate so that our
overridden version and the original version both get executed.

Important Note
For the sake of complete disclosure, it is technically possible to call the lifecycle
methods from our code, but we will never need to in the context of this book. It
is best to leave these things to Android.

Summary
In the first five chapters, we got quite proficient with a whole array of widgets and other
UI elements. We also built a broad selection of UI layouts. In this chapter and the previous
three, we have explored Java and the Android activity lifecycle in quite significant depth,
especially considering how quickly we have done it.

We have, to a small extent, created interaction between our Java code and our UI. We
have called our methods by setting the onClick attribute and we have loaded our UI
layouts using the setContentView method. We haven't, however, really made a proper
connection between our UI and our Java code.

Telegram Channel @IRFaraExam

248 Learning Java Methods

What we really need to do now is to bring these things together, so we can begin to display
and manipulate our data using the Android UI. To achieve this, we need to understand a
bit more about classes.

Classes have been lurking in our code since Chapter 1, Beginning Android and Java, and
we have even used them a bit. Up until now, however, we haven't tackled them properly
other than constantly referring to Chapter 10, Object-Oriented Programming. In the next
chapter, Chapter 10, Object-Oriented Programming, we will quickly get to grips with
classes, and then we can finally start to build apps where the UI designs and our Java code
work in perfect harmony.

Further reading
We have learned enough Java to proceed with the book. It is always beneficial, however, to
see more examples of Java in action and to go beyond the minimum necessary knowledge
to proceed. If you want a good source to learn Java in greater depth, then the official
Oracle website is good. Note that you do not need to study this website to continue with
this book. Also, note that the tutorials on the Oracle website are not set in an Android
context. The site is a useful resource to bookmark and browse all the same:

• The official Java tutorials: https://docs.oracle.com/javase/tutorial/

• The official Android developer site: https://developer.android.com/
training/basics/firstapp

Telegram Channel @IRFaraExam

https://docs.oracle.com/javase/tutorial/
https://developer.android.com/training/basics/firstapp
https://developer.android.com/training/basics/firstapp

10
Object-Oriented

Programming
In this chapter, we will discover that in Java, classes are fundamental to just about
everything. We will also begin to understand why the software engineers at Sun
Microsystems back in the early 1990s made Java the way they did.

We have already talked about reusing other people's code, specifically the Android API,
but in this chapter, we will really get to grips with how this works and learn about object-
oriented programming and how to use it.

In summary, we will cover the following topics:

• What object-oriented programming is, including encapsulation, inheritance, and
polymorphism

• Writing and using our first class in an app

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2010.

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2010
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2010
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2010

250 Object-Oriented Programming

Important memory management warning
I'm referring to our brains' memories for a change. If you tried to memorize this chapter
(or the next), you would have to make a lot of room in your brain and you would probably
forget something really important – like going to work or thanking the author for telling
you not to try and memorize this stuff.

A good goal will be to try and just-about get it. This way, your understanding will
become more rounded. You can then refer to this chapter (or the next) for a refresher
when needed.

Tip
It doesn't matter if you don't completely understand everything in this chapter
straight away! Keep on reading and make sure to complete all the apps.

Object-oriented programming
In Chapter 1, Beginning Android and Java, we mentioned that Java was an object-oriented
language. An object-oriented language requires us to use object-oriented programming
(OOP). It isn't an optional extra like a racing spoiler on a car or pulsating LEDs in
a gaming PC. It's part of Java and therefore Android as well.

Let's find out a little bit more.

What is OOP exactly?
OOP is a way of programming that involves breaking our requirements down into chunks
that are more manageable than the whole.

Each chunk is self-contained yet potentially reusable by other programs, while working
together as a whole with the other chunks.

These chunks are what we refer to as objects. When we plan/code an object, we do so with
a class. A class can be thought of as the blueprint of an object.

We implement an object of a class. This is called an instance of a class. Think about
a house blueprint. You can't live in it, but you can build a house from it; you build an
instance of it. Often when we design classes for our apps, we write them to represent real-
world things.

However, OOP is more than this. It is also a way of doing things – a methodology that
defines best practices.

Telegram Channel @IRFaraExam

Object-oriented programming 251

The three core principles of OOP are encapsulation, polymorphism, and inheritance.
This might sound complex but, when taken a step at a time, is reasonably straightforward.

Encapsulation
Encapsulation means keeping the internal workings of your code safe from
interference from the code that uses it, by allowing only the variables and methods
you choose to be accessed.

This means your code can always be updated, extended, or improved without affecting the
programs that use it, as long as the exposed parts are still accessed in the same way.

Remember this line of code from Chapter 1, Beginning Android and Java?

locationManager.getLastKnownLocation(LocationManager.GPS_
PROVIDER)

With proper encapsulation, it doesn't matter if the satellite company or the Android API
team needs to update the way their code works. Provided the getLastKnownLocation
method signature remains the same, we don't have to worry about what goes on inside.
Our code written before the update will still work after the update.

If the manufacturer of a car gets rid of the wheels and makes it an electrically powered
hovercar, as long as it still has a steering wheel, accelerator, and brake pedal, driving it
should not be too challenging.

Important Note
When we use the classes of the Android API, we are doing so in the way the
Android developers designed their classes to allow us to.

Polymorphism
Polymorphism allows us to write code that is less dependent on the types we are trying to
manipulate, making our code clearer and more efficient. Polymorphism means different
forms. If the objects that we code can be more than one type of thing, then we can take
advantage of this. Some examples in the next chapter will make this clear, and the analogy
coming next will give you a real-world perspective.

If we have a car factory that can make vans and small trucks just by changing the
instructions given to the robots and the parts that go onto the production line, then the
factory is using polymorphism.

Telegram Channel @IRFaraExam

252 Object-Oriented Programming

Wouldn't it be useful if we could write code that could handle different types of data
without starting again? We will see some examples of this in Chapter 11, More Object-
Oriented Programming.

Inheritance
Just like it sounds, inheritance means we can harness all the features and benefits of other
peoples' classes, including the encapsulation and polymorphism, while further refining
their code specifically to our situation. Actually, we have done this already, every time we
have used the extends keyword:

public class MainActivity extends AppCompatActivity {

The AppCompatActivity class itself inherits from Activity. So, we inherited from
Activity every time we created a new Android project. We can go further than this and
see how it is useful.

Imagine if the strongest man in the world gets together with the smartest woman in the
world. There is a good chance that their children will have serious benefits from gene
inheritance. Inheritance in Java lets us do the same thing with another person's code and
our own, creating a class more specific to our needs.

Why do it like this?
When written properly, all this OOP allows you to add new features without worrying as
much about how they interact with existing features. When you do have to change a class,
its self-contained (encapsulated) nature means fewer or perhaps even zero consequences
for other parts of the program. This is the encapsulation part.

You can use other people's code (such as the Android API) without knowing or perhaps
even caring how it works: think about the Android lifecycle, Toast, Log, all the UI
widgets, listening to satellites, and so on. For example, the Button class has nearly 50
methods – do we really want to write all that ourselves, just for a button? Much better to
use someone else's Button class.

OOP allows you to write apps for highly complex situations without breaking a sweat.

You can create multiple similar-yet-different versions of a class without starting the class
from scratch, by using inheritance; and you can still use the methods intended for the
original type of object with your new object because of polymorphism.

It makes sense really. And Java was designed from the start with all of this in mind, so we
are forced into using all this OOP; however, this is a good thing.

Telegram Channel @IRFaraExam

Looking at the code for a class 253

Let's have a quick class recap.

Class recap
A class is a collection of lines of code that can contain methods, variables, loops, and all
the other Java syntax we have learned about. A class is part of a Java package and most
packages will normally have multiple classes. Usually, although not always, each new class
will be defined in its own .java code file with the same name as the class – as with all of
our Activity classes so far.

Once we have written a class, we can use it to make as many objects from it as we want.
Remember, the class is the blueprint and we make objects based on the blueprint. The
house isn't the blueprint just as the object isn't the class; it is an object made from the
class. An object is a reference variable, as is a String variable, and later we will discover
exactly what being a reference variable means. For now, let's look at some actual code.

Looking at the code for a class
Let's say we are making an app for the military. It is for use by senior officers to micro-
manage their troops in battle. Among others, we would probably need a class to represent
a soldier.

Class implementation
Here is the real code for our hypothetical class. We call it a class implementation. As
the class is called Soldier, if we implement this for real, we would do so in a file called
Soldier.java:

public class Soldier {

 // Member variables

 int health;

 String soldierType;

 // Method of the class

 void shootEnemy(){

 // Bang! Bang!

 }

}

Telegram Channel @IRFaraExam

254 Object-Oriented Programming

The preceding is a class implementation for a class called Soldier. There are two
member variables, or fields, an int variable called health, and a String variable
called soldierType.

There is also a method called shootEnemy. The method has no parameters and a void
return type, but class methods can be of any shape or size that we discussed in Chapter 9,
Learning Java Methods.

To be precise about member variables and fields, when the class is instantiated into a
real object, the fields become variables of the object itself and we call them instance or
member variables.

They are just variables of the class, whatever fancy name they are referred to by. However,
the difference between fields and variables declared in methods (called local variables)
does become more important as we progress.

We briefly discussed variable scope at the end of Chapter 9, Learning Java Methods We will
look at all types of variables again later in the next chapter. Let's concentrate on coding
and using a class.

Declaring, initializing, and using an object of the class
Remember that Soldier is just a class, not an actual usable object. It is a blueprint for
a soldier, not an actual soldier object, just as int, String, and boolean are not
variables; they are just types we can make variables of. This is how we make an object of
type Soldier from our Soldier class:

Soldier mySoldier = new Soldier();

In the first part of the code, Soldier mySoldier declares a new variable of type
Soldier called mySoldier. The last part of the code, new Soldier(), calls a special
method called a constructor that is automatically made for all classes by the compiler.

It is this constructor method that creates an actual Soldier object. As you can see, the
constructor method has the same name as the class. We will look at constructors in more
depth later in this chapter.

And of course, the assignment operator = in the middle of the two parts assigns the result
of the second part to that of the first. The next figure summarizes all this information:

Telegram Channel @IRFaraExam

Looking at the code for a class 255

Figure 10.1 – Declaring, initializing, and using an object of the class

This is not far from how we deal with a regular variable except for the constructor/method
call instead of a value on the end of the line of code. To create and use a very basic class,
we have done enough.

Important Note
As we will see when we explore further, we can write our own constructors
rather than relying on the auto-generated constructor. This gives us lots of
power and flexibility, but we will just continue to explore the simplest case
for now.

Just like regular variables, we could also have done it in two parts like this.

Soldier mySoldier;

mySoldier = new Soldier();

This is how we might assign to and use the variables of our hypothetical class:

mySoldier.health = 100;

mySoldier.soldierType = "sniper";

// Notice that we use the object name mySoldier.

// Not the class name Soldier.

// We didn't do this:

// Soldier.health = 100;

// ERROR!

Telegram Channel @IRFaraExam

256 Object-Oriented Programming

Here, the dot operator . is used to access the variables of the class. And this is how we
would call the method – again, by using the object name, not the class name, followed by
the dot operator:

mySoldier.shootEnemy();

We can summarize the use of the dot operator with a diagram:

Figure 10.2 – dot operator

Tip
We can think of a class' method as what it can do and its instance/member
variables as what it knows about itself.

We can also go ahead and make another Soldier object and access its methods
and variables:

Soldier mySoldier2 = new Soldier();

mySoldier2.health = 150;

mySoldier2.soldierType = "special forces";

mySoldier2.shootEnemy();

Telegram Channel @IRFaraExam

Looking at the code for a class 257

It is important to realize that mySoldier2 is a totally separate object with completely
distinct instance variables to mySoldier:

Figure 10.3 – Soldier object

What is also key here is that this preceding code would not be written within the
class itself. For example, we could create the Soldier class in an external file
called Soldier.java and then use the code that we have just seen, perhaps in the
MainActivity class.

This will become clearer when we write our first class in an actual project in a minute.

Also notice that everything is done on the object itself. We must create objects of classes to
make them useful.

Important Note
As always, there are exceptions to this rule. But they are in the minority, and we
will look at the exceptions in the next chapter. In fact, we have already seen two
exceptions in the book so far. The exceptions we have seen are the Toast and
Log classes. Exactly what is going on with them will be explained soon.

Telegram Channel @IRFaraExam

258 Object-Oriented Programming

Let's explore basic classes a little more deeply by writing one for real.

Basic classes app
The generals who will be using our app will need more than one Soldier object. In
the app that we are about to build, we will instantiate and use multiple objects. We will
also demonstrate using the dot operator on variables and methods to show that different
objects have their very own instance variables.

You can get the completed code for this example in the code download. It is in the
chapter 10/Basic Classes folder. But it is most useful to read on to create your
own working example.

Create a project with the Empty Activity template. Call the application Basic Classes.
Now we will create a new class called Soldier:

1. Right-click the com.yourdomain.basicclasses (or whatever your package
name is) folder in the project explorer window.

2. Select New | Java Class.

3. In the Name: field, type Soldier and press the Enter key.

The new class is created for us with a code template ready to put our implementation
within, just as the next code shows.

package com.yourdomain.basicclasses;

public class Soldier {

}

Notice that Android Studio has put the class in the same package/folder as the rest of our
app's Java files.

And now we can write its implementation.

Telegram Channel @IRFaraExam

Basic classes app 259

Write the following class implementation code within the opening and closing curly
braces of the Soldier class as shown. The new code to type is highlighted:

public class Soldier {

 int health;

 String soldierType;

 void shootEnemy(){

 //let's print which type of soldier is shooting

 Log.i(soldierType, " is shooting");

 }

}

Now that we have a class, a blueprint for our future objects of type Soldier, we can
start to build our army. In the editor window, left-click the MainActivity.java tab. We will
write this next code, as so often, within the onCreate method just after the call to the
setContentView method. Type this code:

// First, we make an object of type soldier

Soldier rambo = new Soldier();

rambo.soldierType = "Green Beret";

rambo.health = 150;

// It takes a lot to kill Rambo

// Now we make another Soldier object

Soldier vassily = new Soldier();

vassily.soldierType = "Sniper";

vassily.health = 50;

// Snipers have less health

// And one more Soldier object

Soldier wellington = new Soldier();

wellington.soldierType = "Sailor";

wellington.health = 100;

// He's tough but no green beret

Now we have our extremely varied and unlikely army, we can use it and verify the identity
of each object.

Telegram Channel @IRFaraExam

260 Object-Oriented Programming

Type this code below the code in the previous step:

Log.i("Rambo's health = ", "" + rambo.health);

Log.i("Vassily's health = ", "" + vassily.health);

Log.i("Wellington's health = ", "" + wellington.health);

rambo.shootEnemy();

vassily.shootEnemy();

wellington.shootEnemy();

Now we can run our app. All the output will be in the logcat window.

This is how it works. First, we created our new Soldier class. Then we implemented our
class including declaring two fields (member variables), an int variable and a String
variable called health and soldierType.

We also have a method in our class called shootEnemy. Let's look at it again and
examine what is going on:

void shootEnemy(){

 //let's print which type of soldier is shooting

 Log.i(soldierType, " is shooting");

}

In the body of the method, we print to the logcat window: first soldierType and then
the text " is shooting". What's neat here is that the string soldierType will be
different depending on which object we call the shootEnemy method on.

Next, we declared and created three new objects of type Soldier. They were rambo,
vassily, and wellington.

Finally, we initialized each with a different value for health as well as soldierType.

Here is the output:

Rambo's health =: 150

Vassily's health =: 50

Wellington's health =: 100

Green Beret: is shooting

Sniper: is shooting

Sailor: is shooting

Telegram Channel @IRFaraExam

Basic classes app 261

Notice that each time we access the health variable of each Soldier object, it prints
the value we assigned it, proving that although the three objects are of the same type, they
are completely separate, individual instances/objects.

Perhaps more interesting is the three calls to shootEnemy. One by one, each of our
Soldier object's shootEnemy methods is called and we print the soldierType
variable to the logcat window. The method has the proper value for each individual object,
further proving that we have three distinct objects (instances of the class), albeit created
from the same Soldier class.

We saw how each object is completely independent of the other objects. However, if we
imagine whole armies of Soldier objects in our app, then we realize that we are going to
need to learn new ways of handling large numbers of objects (and regular variables too).

Think about managing just 100 separate Soldier objects. What about when we have
thousands of objects? In addition, this isn't very dynamic. The way we are writing the
code now relies on us (the developers) knowing the exact details of the soldiers that the
generals (the user) will be commanding. We will see the solution for this in Chapter 15,
Arrays, Maps, and Random Numbers.

More things we can do with our first class
We can treat a class much as we can other variables. We can use a class as a parameter in
a method signature, as here:

public void healSoldier(Soldier soldierToBeHealed){

 // Use soldierToBeHealed here

 // And because it is a reference the changes

 // are reflected in the actual object passed into

 // the method.

 // Oops! I just mentioned what

 // a reference variable can do

 // More info in the FAQ, chapter 11, and onwards

}

And when we call the method we must of course pass an object of that type. Here is
a hypothetical call to the healSoldier method:

healSoldier(rambo);

Telegram Channel @IRFaraExam

262 Object-Oriented Programming

Of course, the preceding example might raise questions, such as, should the
healSoldier method be a method of a class?

fieldhospital.healSoldier(rambo);

It could be or it could not. It would depend on what the best solution for the situation was.
We will look at more OOP, and then the best solutions for lots of similar conundrums
should present themselves more easily.

And, as you might guess, we can also use an object as the return value of a method. Here
is what the updated hypothetical healSoldier signature and implementation might
look like now:

Soldier healSoldier(Soldier soldierToBeHealed){

 soldierToBeHealed.health++;

 return soldierToBeHealed;

}

In fact, we have already seen classes being used as parameters. For example, here is our
topClick method from Chapter 2, First Contact: Java, XML, and the UI Designer. It
receives an object called v of type View:

public void topClick(View v){

However, in the case of the topClick method we didn't do anything with the passed-in
object of type View. Partly, this was because we didn't need to, and partly it was because
we don't know what we can do with an object of type View – yet.

As I mentioned at the start of the chapter, you don't need to understand or remember
everything in this chapter. The only way to get good at OOP is to keep using it. Like
learning a spoken language – studying it and poring over grammatical rules will help but
nowhere near as much as having a conversation verbally (or in writing). If you just about
get it, move on with the next chapter.

Telegram Channel @IRFaraExam

Frequently asked questions 263

Frequently asked questions
1. I just can't wait any longer. What is a reference already!?

It literally is the same thing as a reference in normal (non-programming) language.
It is a value that identifies/points to data rather than the actual data itself. One
way of thinking about it is that a reference is a memory location/address. It
identifies and gives access to the actual data at that location/address
in memory.

2. If it is not the actual object but just a reference, how come we can do things like
call methods on it, such as mySoldier.shootEnemy()?

Java works out the exact details under the hood, but you can think of a reference
as being the controller of an object, and anything you want to do to the object you
must do through the controller, because the actual object/memory itself cannot
be directly accessed. More on this in Chapter 12, The Stack, the Heap, and the
Garbage Collector.

Summary
We have at last written our first class. We have seen that we can implement a class in a Java
file of the same name as the class. The class itself doesn't do anything until we instantiate
an object/instance of the class. Once we have an instance of the class, we can use its
variables and methods. As we proved in the basic classes app, each and every instance of
a class has its own distinct variables, just as when you buy a car made in a factory, you get
your very own steering wheel, satnav, and go-faster stripes.

All this information will raise more questions. OOP is like that. So, let's try and
consolidate all this class stuff by taking another look at variables and encapsulation,
polymorphism, and inheritance in action in the next chapter. We can then go further with
classes and explore topics such as static classes (such as Log and Toast) as well as the more
advanced concepts of abstract classes and interfaces.

Telegram Channel @IRFaraExam

Telegram Channel @IRFaraExam

11
More

Object-Oriented
Programming

This chapter is the second part of our whirlwind tour (theoretical and practical) into
OOP. We have already briefly discussed the concepts of encapsulation, inheritance, and
polymorphism, but in this chapter, we will get to see them more in action in some demo
apps. While the working examples will show these concepts in their simplest forms, it will
still be a significant stepping stone towards taking control of our layouts via our Java code.

In this chapter, we will explore the following:

• Encapsulation in depth and how it helps us

• Inheritance in depth and how to take full advantage

• Polymorphism explained in greater detail

• Static classes and how we have been using them already

• Abstract classes and interfaces

First, we will handle encapsulation.

Telegram Channel @IRFaraExam

266 More Object-Oriented Programming

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2011.

Remember that encapsulation thing?
So far, what we have really seen is what amounts to a kind of code-organizing convention
where we write classes, full of variables and methods. We did discuss the wider goals of
all this OOP stuff but now we will take things further and begin to see how we actually
manage to achieve encapsulation with OOP.

Definition of encapsulation
Encapsulation describes the ability of an object to hide its data and methods
from the rest of the world, allowing only the variables and methods you choose
to be accessed. This means your code can always be updated, extended, or
improved without affecting the programs that use it – provided the exposed
parts are still made accessible in the same way. It also allows the code that uses
your encapsulated code to be much simpler and easier to maintain because
much of the complexity of the task is encapsulated within your code.

But didn't you say we don't have to know what is going on inside? So you might question
what we have seen so far like this: If we are constantly setting the instance variables like
this rambo.health = 100;, isn't it possible that, eventually, things could start to go
wrong, perhaps like this?

rambo.soldierType = "fluffy bunny";

Encapsulation protects the objects of your class from being used in a way that they weren't
meant to be. By controlling the way that your classes' code is used, it can only ever do
what you want it to do and with value ranges that you can control.

It can't be forced into errors or crashes. Also, you are then free to make changes to the way
your code works internally, without breaking the rest of your program or any programs
that are using an older version of the code:

weightlifter.legstrength = 100;

weightlifter.armstrength = 1;

weightlifter.liftHeavyWeight();

// one typo and weightlifter rips own arms off

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2011
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2011
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2011

Remember that encapsulation thing? 267

Encapsulation is not just vital for writing code that other people will use (such as the
Android API that we use), it is also essential when writing code we will reuse ourselves
as it will save us from our own mistakes. Furthermore, a team of programmers will use
encapsulation extensively so that different members of the team can work on the same
program without all members of the team knowing how the other team members' code
works. We can encapsulate our classes for this same advantage and here is how.

Controlling class use with access modifiers
The designer of the class controls what can be seen and manipulated by any program that
uses their class. We can add an access modifier before the class keyword like this:

public class Soldier{

 //Implementation goes here

}

Class access modifiers
There are two main access modifiers for classes in the context we have discussed so far.
Let's briefly look at each in turn:

• public: This is straightforward. A class declared as public can be seen by all
other classes.

• default: A class has default access when no access modifier is specified. This will
make it public but only to classes in the same package and inaccessible to all others.

So now we can make a start on this encapsulation thing. But even at a glance, the access
modifiers described are not very fine-grained. We seem to be limited to complete
lockdown to anything outside the package or a complete free-for-all.

Actually, the benefits here are easily taken advantage of. The idea would be to design a
package of classes that fulfills a set of tasks. Then, all the complex inner workings of the
package, the stuff that shouldn't be messed with by anybody but our package, should be
default access (only accessible to classes within the package). We can then make available
a careful choice of public classes that can be used by others (or other distinct parts of our
program).

Important note
For the size and complexity of the apps in this book, creating multiple packages
is overkill. We will of course be using other people's packages and classes (the
public parts), so this stuff is worth knowing.

Telegram Channel @IRFaraExam

268 More Object-Oriented Programming

Class access in summary
A well-designed app will probably consist of one or more packages, each containing only
default or default and public classes.

In addition to class-level privacy controls, Java gives us programmers very fine-grained
controls, but to use these controls, we have to look into variables with a little more detail.

Controlling variable use with access modifiers
To build on the class visibility controls, we have variable access modifiers. Here is a
variable with the private access modifier being declared:

private int myInt;

Note also that all of our discussion of variable access modifiers applies to object variables
too. For example, here is an instance of our Soldier class being declared, created, and
assigned. As you can see, the access specified in this case is public:

public Soldier mySoldier = new Soldier();

Before you apply a modifier to a variable, you must first consider the class visibility.
If class a is not visible to class b, say because class a has default access and class b is in
another package, then it doesn't make any difference what access modifiers you use on the
variables in class a – class b can't see any of them anyway.

So, it makes sense to show a class to another class when necessary but only to expose the
variables that are directly needed – not everything.

Here is an explanation of the different variable access modifiers.

Variable access modifiers
Variable access modifiers are more numerous and finely grained than class access
modifiers. The depth and complexity of access modification are not so much in the range
of modifiers but rather in the smart ways we can combine them to achieve the worthy
goals of encapsulation. Here are the variable access modifiers:

• public: You guessed it, any class or method from any package can see this
variable. Use public only when you are sure this is what you want.

• protected: This is the next least restrictive after public. protected variables
can be seen by any class and any method as long as they are in the same package.

Telegram Channel @IRFaraExam

Remember that encapsulation thing? 269

• default: default doesn't sound as restrictive as protected but it is more so.
A variable has default access when no access is specified. The fact that default
is restrictive perhaps implies we should be thinking of hiding our variables more
than we should be exposing them. At this point, we need to introduce a new
concept. Do you remember we briefly discussed inheritance and how we can
quickly take on the attributes of a class and yet refine it by using the extends
keyword? Just for the record, default access variables are not visible to subclasses;
that is, when we extend a class as we did with an Activity, we cannot see its default
variables. We will look at inheritance in more detail later in the chapter.

• private: private variables can only be seen within the class they are declared.
This means, like default access, they cannot be seen by subclasses (classes that
inherit from the class in question).

Variable access summary
A well-designed app will probably consist of one or more packages, each containing only
default or default and public classes. Within these classes, variables will have
carefully chosen and varied access modifiers, chosen with a view to achieving our goal of
encapsulation.

One more twist in all this access modification stuff before we get practical with it.

Methods can have access modifiers too
We already briefly mentioned in Chapter 9, Learning Java Methods, that methods can have
access modifiers. It makes sense because methods are the things that our classes can do.
We will want to control what users of our classes can and can't do.

The general idea here is that some methods will do things internally only and are therefore
not needed by users of the class and some methods will be fundamental to how users of
the class use the class.

Method access modifiers
The access modifiers for methods are the same as for the class variables. This makes things
easy to remember but suggests, again, that successful encapsulation is a matter of design
rather than of following any specific set of rules.

Telegram Channel @IRFaraExam

270 More Object-Oriented Programming

As an example, this method, provided it is in a public class, could be used by any
other class:

public useMeEverybody(){

 //do something everyone needs to do here

}

Whereas this method could only be used internally by the class that it is part of:

private secretInternalTask(){

 /*

 do something that helps the class function

 internally

 Perhaps, if it is part of the same class,

 useMeEverybody could use this method...

 On behalf of the classes outside of this class.

 Neat!

 */

}

And this next method with no access specified has default visibility. It can be used only
by other classes in the same package. If we extend the class holding this default access
method, the child class will not have access to this parent class's method:

fairlySecretTask(){

 // allow just the classes in the package

 // Not for external use

}

As the last example before we move on, here is a protected method, only visible to the
package, but usable by our classes that extend it – just like onCreate:

protected packageTask(){

 // Allow just the classes in the package

 // And you can use me if you extend me too

}

Let's have a quick recap of method encapsulation, but remember that you don't need to
memorize everything.

Telegram Channel @IRFaraExam

Remember that encapsulation thing? 271

Method access summary
Method access should be chosen to best enforce the principles we have already discussed.
It should provide the users of your class with just the access they need and preferably
nothing more. Thereby we achieve our encapsulation goals, such as keeping the internal
workings of your code safe from interference from the programs that use it, for all the
reasons we have discussed.

Accessing private variables with getters and setters
Now, if it is best practice to hide our variables away as private, we need to consider how
we allow access to them without spoiling our encapsulation. What if an object of the
Hospital class wanted access to the health member variable from an object of type
Soldier, so it could increase it? The health variable should be private because we
don't want just any piece of code changing it.

To be able to make as many member variables as possible private and yet still allow some
kind of limited access to some of them, we use getters and setters. Getters and setters are
just methods that get and set variable values.

This is not some special new Java thing we have to learn. It is just a convention for using
what we already know. Let's have a look at getters and setters using our Soldier class
and Hospital class examples.

In this example, each of our two classes is created in its own file but the same package.
First of all, here is our hypothetical Hospital class:

class Hospital{

 private void healSoldier(Soldier soldierToHeal){

 int health = soldierToHeal.getHealth();

 health = health + 10;

 soldierToHeal.setHealth(health);

 }

}

Our implementation of the Hospital class has just one method, healSoldier. It
receives a reference to a Soldier object as a parameter. So, this method will work on
whichever Soldier object is passed in: vassily, wellington, rambo, or whoever.

Telegram Channel @IRFaraExam

272 More Object-Oriented Programming

It also has a local health variable, which it uses to temporarily hold and increase the
soldier's health. In the same line, it initializes the health variable to the Soldier
object's current health. The Soldier object's health is private so the public getHealth
getter method is used instead.

Then health is increased by 10 and the setHealth setter method loads up the new
revived health value, back to the Soldier object.

The key here is that although a Hospital object can change a Soldier object's health,
it only does so within the bounds of the getter and setter methods. The getter and setter
methods can be written to control and check for potentially mistaken, or even harmful,
values.

Next, look at our hypothetical Soldier class we have just been using with the simplest
implementation possible of its getter and setter methods:

public class Soldier{

 private int health;

 public int getHealth(){

 return health;

 }

 public void setHealth(int newHealth){

 // Check for bad values of newHealth

 health = newHealth;

 }

}

We have one instance variable called health and it is private. Private means it can
only be changed by methods of the Soldier class. We then have a public getHealth
method that returns the value held in the private health int variable. As this method is
public, any code with access to an object of type Soldier can use it.

Next, the setHealth method is implemented. Again, it is public but this time it takes
an int as a parameter and assigns whatever is passed in to the private health variable.
In a more life-like example, we would write some more code here to make sure the value
passed in is within the bounds we expect.

Telegram Channel @IRFaraExam

Remember that encapsulation thing? 273

Now we declare, create, and assign to make an object of each of our two new classes and
see how our getters and setters work:

Soldier mySoldier = new Soldier();

// mySoldier.health = 100;//Doesn't work, private

// we can use the public setter setHealth() instead

mySoldier.setHealth(100); //That's better

Hospital militaryHospital = new Hospital();

// Oh no mySoldier has been wounded

mySoldier.setHealth(10);

/*

 Take him to the hospital.

 But my health variable is private

 And Hospital won't be able to access it

 I'm doomed - tell Laura I love her

 No wait- what about my public getters and setters?

 We can use the public getters and setters

 from another class

*/

militaryHospital.healSoldier(mySoldier);

// mySoldiers private variable health has been increased

// by 10. I'm feeling much better thanks!

We see that we can call our public setHealth and getHealth methods directly on
our object of type Soldier. Not only that, we can call the healSoldier method of the
Hospital object, passing in a reference to the Soldier object, which too can use the
public getters and setters to manipulate the private health variable.

We see that the private health variable is simply accessible, yet totally within the control
of the designer of the Soldier class.

Telegram Channel @IRFaraExam

274 More Object-Oriented Programming

If you want to play around with this example, there is the code for a working app in the
code bundle in the Chapter 11 folder called GettersAndSetters. I have added a
few lines of code to print to the console.

Important note
Getters and setters are sometimes referred to by their more correct names,
Accessors and Mutators. We will stick to getters and setters. I just thought you
might like to know the jargon.

Yet again, our example and the explanation are probably raising more questions.
That's good.

By using encapsulation features (such as access control), it is like signing a really
important deal about how to use and access a class, its methods, and variables. The
contract is not just an agreement about now, but an implied guarantee for the future. We
will see that as we go ahead through this chapter, there are more ways in which we'll refine
and strengthen this contract.

Tip
Use encapsulation where it is needed or, of course, if you are being paid to use
it by an employer. Often encapsulation is overkill on small learning projects,
such as some of the examples in this book. Except, of course, when the topic
you are learning is encapsulation itself.

We are learning this Java OOP stuff under the assumption that you will one day
want to write much more complex apps, whether on Android or some other
platform that uses OOP. In addition, we will be using classes from the Android
API that use it extensively and it will help us understand what is happening
then as well. Typically, throughout this book, we will use encapsulation when
implementing full projects and often overlook it when showing small code
samples to demonstrate a single idea or topic.

Setting up our objects with constructors
With all these private variables and their getters and setters, does it mean that we need a
getter and a setter for every private variable? What about a class with lots of variables that
need initializing at the start. Think about the following:

mySoldier.name

mysoldier.type

mySoldier.weapon

Telegram Channel @IRFaraExam

Remember that encapsulation thing? 275

mySoldier.regiment

...

Some of these variables might need getters and setters, but what if we just want to set
things up when the object is first created, to make the object function correctly?

Surely, we don't need two methods (a getter and a setter) for each?

Fortunately, this is unnecessary. To solve this potential problem there is a special method
called a constructor. We briefly mentioned the existence of a constructor when we
discussed instantiating an object of a class in Chapter 10, Object-Oriented Programming.
Let's look again at constructors.

Here, we create an object of type Soldier and assign it to an object called mySoldier:

Soldier mySoldier = new Soldier();

Nothing new here but look at the last part of that line of code:

...Soldier();

This looks suspiciously like a method.

All along, we have been calling a special method called a constructor that has been created
behind the scenes, automatically, by the compiler.

However, and this is getting to the point now, like a method, we can override the
constructor, which means we can do useful things to set up our new object before it is
used. This next code shows how we could do this:

public Soldier(){

 // Someone is creating a new Soldier object

 health = 200;

 // more setup here

}

The constructor has a lot of syntactical similarities to a method. It can, however, only
be called with the use of the new keyword, and it is created for us automatically by the
compiler – unless we create our own like in the previous code.

Telegram Channel @IRFaraExam

276 More Object-Oriented Programming

Constructors have the following features:

• They have no return type

• They have the exact same name as the class

• They can have parameters

• They can be overloaded

One more piece of Java syntax that it is useful to introduce at this point is the Java
this keyword.

The this keyword is used when we want to be explicit about exactly which variables we
are referring to. Look at this example constructor, again for a hypothetical variation of the
Soldier class:

public class Soldier{

 String name;

 String type;

 int health;

 // This is the constructor

 // It is called when a new instance is created

 public Soldier(String name, String type, int health){

 // Someone is creating a new Soldier object

 this.name = name;

 this.type = type;

 this.health = health;

 // more setup here

 }

}

This time, the constructor has a parameter for each of the variables we want to
initialize. By using the this keyword, it is clear when we mean the member variable or
the parameter.

Telegram Channel @IRFaraExam

Static methods 277

There are more twists and turns to be learned about variables and this and they make
much more sense when applied to a practical project. In the next app, we will explore all
we have learned so far in this chapter and some more new ideas too.

First, a bit more OOP.

Static methods
We know quite a lot about classes already. For example, we know how to turn them into
objects and use their methods and variables. But something isn't quite right. Since the
very start of the book, we have been using two classes more than any other. We have
repeatedly used Log and Toast to output to logcat or the user's screen but have not
instantiated them once! How can this be? We never did this:

Log myLog = new Log();

Toast myToast = new Toast();

We just went ahead and used the classes directly, like this:

Log.i("info","our message here");

Toast.makeText(this, "our message",

Toast.LENGTH_SHORT).show();

The static methods of classes can be used without first instantiating an object of the class.
We can think of this as a static method belonging to the class and all other methods
belonging to an object/instance of a class.

And as you have probably realized by now, Log and Toast both contain static methods.
To be clear: Log and Toast contain static methods; they themselves are still classes.

Classes can have both static and regular methods as well, but the regular methods would
need to be used in a regular way, via an instance/object of the class.

Take another look at Log.i in action:

Log.i("info","our message here");

Here, i is the method being statically accessed and the method takes two parameters,
both of type String.

Telegram Channel @IRFaraExam

278 More Object-Oriented Programming

Next, we see the static method makeText of the Toast class in use:

Toast.makeText(this, "our message",

Toast.LENGTH_SHORT).show();

The makeText method of the Toast class takes three arguments.

The first is this, which is a reference to the current class. We saw when talking about
constructors that to explicitly refer to the member variables of the current instance of an
object, we can use this.health, this.regiment, and so on.

When we use this as we do in the previous line of code, we are referring to the instance
of the class itself; not the Toast class but the this in the previous line of code is a
reference to the class the method is being used from. In our case, we have used it from the
MainActivity class.

Many things in Android require a reference to an instance of Activity to do their job.
We will fairly regularly throughout this book pass in this (a reference to Activity)
in order to enable a class/object from the Android API to do its work. We will also write
classes that need this as an argument in one or more of its methods. So, we will see how
to handle this when it is passed in as well.

The second argument of the makeText method is of course a String.

The third argument is accessing a final variable, LENGTH_SHORT, again via the class
name not an instance of the class. If we declare a variable like this next line of code:

public static final int LENGTH_SHORT = 1;

If the variable was declared in a class called MyClass, we could access the variable
like this: MyClass.LENGTH_SHORT and use it like any other variable, but the final
keyword makes sure that the value of the variable can never be changed. This type of
variable is called a constant.

The static keyword also has another consequence for a variable, especially when it is
not a constant (can be changed) and we will see this in action in our next app.

Now if you look carefully at the very end of the line of code that shows a Toast message
to the user, you will see something else new, .show().

This is called chaining and what we are doing is calling a second method of the
Toast class but using just one line of code. It is the show method that actually triggers
the message.

Telegram Channel @IRFaraExam

Encapsulation and static methods mini-app 279

We will look at chaining more closely as we proceed through the book, such as in Chapter
14, Android Dialog Windows, when we make a pop-up dialog.

Tip
If you want to read about the Toast class and some of its other methods
in detail, you can do so here: http://developer.android.com/
reference/android/widget/Toast.html.

Static methods are often provided in classes that have uses that are so generic it doesn't
make sense to create an object of the class. Another really useful class with static methods
is Math. This class is actually a part of the Java API, not the Android API.

Tip
Want to write a calculator app? It's easier than you think with the static
methods of the Math class. You can look at them here: http://docs.
oracle.com/javase/7/docs/api/java/lang/Math.html.

If you try this out, you will need to import the Math class the same way you imported all
the other classes we have used. Next, we can try out a practical mini app to understand
encapsulation and static methods.

Encapsulation and static methods mini-app
We have looked at the intricate way that access to variables and their scope is controlled
and it would serve us well to look at an example of them in action. These will not so much
be practical real-world examples of variable use, more a demonstration to help understand
access modifiers for classes, methods, and variables alongside the different types of
variables such as reference or primitive and local or instance, along with the new concepts
of static and final variables and the this keyword.

The completed code is in the chapter 11 folder of the download bundle. It is called
Access Scope This And Static.

Create a new Empty Activity project and call it Access Scope This And Static.

Create a new class by right-clicking on the existing MainActivity class in the project
explorer and clicking New | Java Class. Name the new class AlienShip.

Telegram Channel @IRFaraExam

http://developer.android.com/reference/android/widget/Toast.html
http://developer.android.com/reference/android/widget/Toast.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html

280 More Object-Oriented Programming

Now we will declare our new class and some member variables. Note that numShips is
private and static. We will see how this variable is the same across all instances of
the class soon. The shieldStrength variable is private and shipName is public:

public class AlienShip {

 private static int numShips;

 private int shieldStrength;

 public String shipName;

Next is the constructor. We can see that the constructor is public, has no return type,
and has the same name as the class – as per the rules. In it, we increment the private
static numShips variable. Remember this will happen each time we create a new
object of type AlienShip. Also, the constructor sets a value for the private variable
shieldStrength using the private setShieldStrength method:

public AlienShip(){

 numShips++;

 /*

 Can call private methods from here because I am

 part of the class.

 If didn't have "this" then this call

 might be less clear

 But this "this" isn't strictly necessary

 Because of "this" I am sure I am setting

 the correct shieldStrength

 */

 this.setShieldStrength(100);

}

Here is the public static getter method so classes outside of AlienShip can find out
how many AlienShip objects there are. We will also see the way in which we use
static methods:

Telegram Channel @IRFaraExam

Encapsulation and static methods mini-app 281

 public static int getNumShips(){

 return numShips;

 }

And this is our private setShieldStrength method. We could have just set
shieldStrength directly from within the class, but the code below shows how
we distinguish between the shieldStrength local variable/parameter and the
shieldStrength member variable by using the this keyword:

private void setShieldStrength(int shieldStrength){

 // "this" distinguishes between the

 // member variable shieldStrength

 // And the local variable/parameter of the same name

 this.shieldStrength = shieldStrength;

}

This next method is the getter so other classes can read but not alter the shield strength of
each AlienShip object:

public int getShieldStrength(){

 return this.shieldStrength;

}

Now we have a public method that can be called every time an AlienShip object is hit.
It just prints to the console and then detects whether that object's shieldStrength is
zero. If it is, it calls the destroyShip method, which we'll look at next:

public void hitDetected(){

 shieldStrength -=25;

 Log.i("Incomiming: ","Bam!!");

 if (shieldStrength == 0){

Telegram Channel @IRFaraExam

282 More Object-Oriented Programming

 destroyShip();

 }

}

And lastly for our AlienShip class, we will code the destroyShip method. We print
a message that indicates which ship has been destroyed based on its shipName as well as
decrementing the numShips static variable so we can keep track of how many objects of
type AlienShip we have:

 private void destroyShip(){

 numShips--;

 Log.i("Explosion: ", ""+this.shipName + "

 destroyed");

 }

} // End of the class

Now we switch over to our MainActivity class and write some code that uses our
new AlienShip class. All the code goes in the onCreate method after the call to
setContentView. First, we create two new AlienShip objects called girlShip and
boyShip:

// every time we do this the constructor runs

AlienShip girlShip = new AlienShip();

AlienShip boyShip = new AlienShip();

In the next code, look at how we get the value in numShips. We use the getNumShips
method as we might expect. However, look closely at the syntax. We are using the class
name and not an object. We can also access static variables with methods that are not
static. We did it this way to see a static method in action:

// Look no objects but using the static method

Log.i("numShips: ", "" + AlienShip.getNumShips());

Now we assign names to our public shipName String variables:

// This works because shipName is public

girlShip.shipName = "Corrine Yu";

boyShip.shipName = "Andre LaMothe";

Telegram Channel @IRFaraExam

Encapsulation and static methods mini-app 283

In this next code, we try to assign a value directly to a private variable. It won't work.
Then we use the public getter method getShieldStrength to print out the
shieldStrength, which was assigned in the constructor:

// This won't work because shieldStrength is private

// girlship.shieldStrength = 999;

// But we have a public getter

Log.i("girl shields: ", "" + girlShip.getShieldStrength());

Log.i("boy shields: ", "" + boyShip.getShieldStrength());

// And we can't do this because it's private

// boyship.setShieldStrength(1000000);

Finally, we get to blow some stuff up by playing with the hitDetected method and
occasionally checking the shieldStrength of our two objects:

// let's shoot some ships

girlShip.hitDetected();

Log.i("girl shields: ", "" + girlShip.getShieldStrength());

Log.i("boy shields: ", "" + boyShip.getShieldStrength());

boyShip.hitDetected();

boyShip.hitDetected();

boyShip.hitDetected();

Log.i("girl shields: ", "" + girlShip.getShieldStrength());

Log.i("boy shields: ", "" + boyShip.getShieldStrength());

boyShip.hitDetected();//Ahhh!

Log.i("girl shields: ", "" + girlShip.getShieldStrength());

Log.i("boy shields: ", "" + boyShip.getShieldStrength());

Telegram Channel @IRFaraExam

284 More Object-Oriented Programming

When we think we have destroyed a ship, we again use our static getNumShips method
to see if our static variable numShips was changed by the destroyShip method:

Log.i("numShips: ", "" + AlienShip.getNumShips());

Run the demo and look at the console output:

numShips: 2

girl shields: 100

boy shields: 100

Incomiming: Bam!!

girl shields:: 75

boy shields:: 100

Incomiming: Bam!!

Incomiming: Bam!!

girl shields:: 75

boy shields:: 25

Incomiming: Bam!!

Explosion: Andre LaMothe destroyed

girl shields: 75

boy shields: 0

numShips: 1

boy shields: 0

numShips: 1

In the previous example, we saw that we can distinguish between local and member
variables of the same name by using the this keyword. We can also use the this
keyword to write code that refers to whatever the current object being acted upon is.

We saw that a static variable – in this case, numShips – is consistent across all
instances; moreover, by incrementing it in the constructor and decrementing it in our
destroyShip method, we can keep track of the number of AlienShip objects we
currently have.

We also saw that we can use static methods by using the class name with the dot operator
instead of an actual object.

Tip
Yes, I know it is like living in the blueprint of a house – but it's quite useful too.

Telegram Channel @IRFaraExam

OOP and inheritance 285

Finally, we proved how we could hide and expose certain methods and variables using an
access specifier.

Next, we will look at the topic of inheritance.

OOP and inheritance
We have seen how we can use other people's code by instantiating/creating objects from
the classes of an API like Android. But this whole OOP thing goes even further than that.

What if there is a class that has loads of useful functionality in it but not exactly what we
want? We can inherit from the class and then further refine or add to how it works and
what it does.

You might be surprised to hear that we have done this already. In fact, we have done
this with every single app we have created. When we use the extends keyword, we are
inheriting. Remember this:

public class MainActivity extends AppCompatActivity ...

Here, we are inheriting the AppCompatActivity class along with all its functionality –
or more specifically, all the functionality that the class designers want us to have access to.
Here are some of the things we can do to classes we have extended.

We can even override a method and still rely in part on the overridden method in
the class we inherit from. For example, we overrode the onCreate method every
time we extended the AppCompatActivity class. But we also called on the default
implementation provided by the class designers when we did this:

super.onCreate(...

And in Chapter 6, The Android Lifecycle, we overrode just about all of the Activity class
lifecycle methods.

We discuss inheritance mainly so that we understand what is going on around us and
as the first step towards being able to eventually design useful classes that we or others
can extend.

With this in mind, let's look at some example classes and see how we can extend them,
just to see the syntax and as a first step, and also to be able to say we have done it.

Telegram Channel @IRFaraExam

286 More Object-Oriented Programming

When we look at the final major topic of this chapter, polymorphism, we will also dig a
little deeper into inheritance at the same time. Here is some code using inheritance.

This code would go in a file named Animal.java:

public class Animal{

 // Some member variables

 public int age;

 public int weight;

 public String type;

 public int hungerLevel;

 public void eat(){

 hungerLevel--;

 }

 public void walk(){

 hungerLevel++;

 }

}

Then in a separate file named Elephant.java, we could do this:

public class Elephant extends Animal{

 public Elephant(int age, int weight){

 this.age = age;

 this.weight = weight;

 this.type = "Elephant";

 int hungerLevel = 0;

 }

}

We can see in the previous code that we have implemented a class called Animal and
it has four member variables: age, weight, type, and hungerLevel. It also has two
methods, eat and walk.

Telegram Channel @IRFaraExam

Inheritance example app 287

We then extended Animal with Elephant. Elephant can now do anything an
Animal can and it also has all its variables.

We initialized the variables from Animal that Elephant has in the Elephant
constructor. Two variables (age and weight) are passed into the constructor when an
Elephant object is created and two variables (type and hungerLevel) are assigned
the same for all Elephant objects.

We could go ahead and write a bunch of other classes that extend Animal, perhaps
Lion, Tiger, and ThreeToedSloth. Each would have an age, weight, type, and
hungerLevel and each would be able to walk and eat.

As if OOP were not useful enough already, we can now model real-world objects. We have
also seen that we can make OOP even more useful by subclassing/extending/inheriting
from other classes. The terminology we might like to learn here is that the class that is
extended from is the super class and the class that inherits from the super class is the
subclass. We can also say the parent and child class.

Tip
As usual, we might find ourselves asking this question about inheritance. Why?
The reason is something like this: we can write common code once, in the
parent class; we can update that common code and all classes that inherit from
it are also updated. Furthermore, a subclass only gets to use public/protected
instance variables and methods. So, designed properly, this also further
enhances the goals of encapsulation.

Let's build another small app to play about with inheritance.

Inheritance example app
We have looked at the way we can create hierarchies of classes to model a system that fits
our app. So, let's try out some simple code that uses inheritance. The completed code is in
the chapter 11 folder of the code download. It is called Inheritance Example.

Create a new project called Inheritance Example using the Empty Activity template
and then add three new classes in the usual way. Name one AlienShip, another
Fighter, and the last one Bomber.

Here is the code for the AlienShip class. It is very similar to our previous class demo,
AlienShip. The differences are that the constructor now takes an int parameter, which
it uses to set the shield strength.

Telegram Channel @IRFaraExam

288 More Object-Oriented Programming

The constructor also outputs a message to the logcat window, so we can see when it is
being used. The AlienShip class also has a new method, fireWeapon, that is declared
as abstract.

Declaring a class as abstract guarantees that any class that subclasses AlienShip
must implement its own version of fireWeapon. Notice the class has the abstract
keyword as part of its declaration. We have to do this because one of its methods also uses
the abstract keyword. We will explain the abstract method when discussing this
demo and the abstract class when we talk about polymorphism in the next section.

Add the following code to the AlienShip class:

public abstract class AlienShip {

 private static int numShips;

 private int shieldStrength;

 public String shipName;

 public AlienShip(int shieldStrength){

 Log.i("Location: ", "AlienShip constructor");

 numShips++;

 setShieldStrength(shieldStrength);

 }

 public abstract void fireWeapon();

 // Ahh my body where is it?

 public static int getNumShips(){

 return numShips;

 }

 private void setShieldStrength(int shieldStrength){

 this.shieldStrength = shieldStrength;

 }

 public int getShieldStrength(){

 return this.shieldStrength;

 }

Telegram Channel @IRFaraExam

Inheritance example app 289

 public void hitDetected(){

 shieldStrength -=25;

 Log.i("Incomiming: ", "Bam!!");

 if (shieldStrength == 0){

 destroyShip();

 }

 }

 private void destroyShip(){

 numShips--;

 Log.i("Explosion: ", "" + this.shipName + "

 destroyed");

 }

}

Now we will implement the Bomber class. Notice the call to super(100). This calls the
constructor of the super class with the value for shieldStrength. We could do further
specific Bomber initialization in this constructor, but for now, we just print out the
location so we can see when the Bomber constructor is being executed. We also, because
we must, implement a Bomber specific version of the abstract fireWeapon method.
Add the following code to the Bomber class:

public class Bomber extends AlienShip {

 public Bomber(){

 super(100);

 // Weak shields for a bomber

 Log.i("Location: ", "Bomber constructor");

 }

 public void fireWeapon(){

 Log.i("Firing weapon: ", "bombs away");

 }

}

Telegram Channel @IRFaraExam

290 More Object-Oriented Programming

Now we will implement the Fighter class. Notice the call to super(400). This calls
the constructor of the super class with the value for shieldStrength. We could do
further specific Fighter initialization in this constructor but for now, we just print out
the location so we can see when the Fighter constructor is being executed. We also
must implement a Fighter specific version of the abstract fireWeapon method. Add
the following code to the Fighter class:

public class Fighter extends AlienShip{

 public Fighter(){

 super(400);

 // Strong shields for a fighter

 Log.i("Location: ", "Fighter constructor");

 }

 public void fireWeapon(){

 Log.i("Firing weapon: ", "lasers firing");

 }

}

Next, we will code the onCreate method of MainActivity. As usual, enter this code
after the call to the setContentView method. This is the code that uses our three new
classes. The code looks quite ordinary – nothing new. It is the output that is interesting:

Fighter aFighter = new Fighter();

Bomber aBomber = new Bomber();

// Can't do this AlienShip is abstract -

// Literally speaking as well as in code

// AlienShip alienShip = new AlienShip(500);

// But our objects of the subclasses can still do

// everything the AlienShip is meant to do

aBomber.shipName = "Newell Bomber";

Telegram Channel @IRFaraExam

Inheritance example app 291

aFighter.shipName = "Meier Fighter";

// And because of the overridden constructor

// That still calls the super constructor

// They have unique properties

Log.i("aFighter Shield:", ""+ aFighter.getShieldStrength());

Log.i("aBomber Shield:", ""+ aBomber.getShieldStrength());

// As well as certain things in certain ways

// That are unique to the subclass

aBomber.fireWeapon();

aFighter.fireWeapon();

// Take down those alien ships

// Focus on the bomber it has a weaker shield

aBomber.hitDetected();

aBomber.hitDetected();

aBomber.hitDetected();

aBomber.hitDetected();

Run the app and you will get the following output in the logcat window:

Location:: AlienShip constructor

Location:: Fighter constructor

Location:: AlienShip constructor

Location:: Bomber constructor

aFighter Shield:: 400

aBomber Shield:: 100

Firing weapon:: bombs away

Firing weapon:: lasers firing

Incomiming:: Bam!!

Incomiming:: Bam!!

Incomiming:: Bam!!

Incomiming:: Bam!!

Explosion:: Newell Bomber destroyed

Telegram Channel @IRFaraExam

292 More Object-Oriented Programming

We can see how the constructor of the subclass calls the constructor of the super class.
We can also clearly see that the individual implementations of the fireWeapon method
work exactly as expected.

Let's take a closer look at the final major OOP concept, polymorphism. Then we will be
able to do some more practical things with the Android API.

Polymorphism
We already know that polymorphism means different forms. But what does it mean to us?

Boiled down to its simplest:

Any subclass can be used as part of the code that uses the super class.
This means we can write code that is simpler and easier to understand, and easier
to change.

Also, we can write code for the super class and rely on the fact that no matter how many
times it is sub-classed, within certain parameters, the code will still work. Let's discuss
an example.

Suppose we want to use polymorphism to help to write a zoo management app. We will
probably want to have a method such as feed. We will probably want to pass a reference
to the animal to be fed into the feed method. This might seem like we need to write a
feed method for each and every type of Animal.

However, we can write polymorphic methods with polymorphic return types and
arguments:

Animal feed(Animal animalToFeed){

 // Feed any animal here

 return animalToFeed;

}

The preceding method has Animal as a parameter, which means that any object that is
built from a class that extends Animal can be passed into it. And as you can see in the
preceding code, the method also returns Animal, which has exactly the same benefits.

There is a small gotcha with polymorphic return types and that is that we need to be aware
of what is being returned and make it explicit in the code that calls the method.

Telegram Channel @IRFaraExam

Polymorphism 293

For example, we could handle Elephant being passed into the feed method like this:

someElephant = (Elephant) feed(someElephant);

Notice the highlighted (Elephant) in the previous code. This makes it plain that we
want Elephant from the returned Animal. This is called casting. We will use casting
occasionally throughout the rest of the book.

So, you can even write code today and make another subclass in a week, month, or year,
and the very same methods and data structures will still work.

Also, we can enforce upon our subclasses a set of rules as to what they can and cannot do,
as well as how they do it. So, clever design in one stage can influence it at other stages.

But will we ever really want to instantiate an actual Animal?

Abstract classes
We played with an abstract class in the inheritance example app but let's dig a little deeper.
An abstract class is a class that cannot be instantiated; it cannot be made into an object.
So, it's a blueprint that will never be used then? But that's like paying an architect to design
your home and then never building it? You might be saying to yourself, "I kind of got the
idea of an abstract method but abstract classes are just silly."

If we or the designer of a class wants to force us to inherit before we use their class, they
can declare a class abstract. Then, we cannot make an object from it; therefore, we must
extend it first and make an object from the subclass.

We can also declare a method abstract and then that method must be overridden in
any class that extends the class with the abstract method.

Let's look at an example – it will help. We make a class abstract by declaring it with the
abstract keyword like this:

abstract class someClass{

 /*

 All methods and variables here.

 As usual!

 Just don't try and make

 an object out of me!

 */

}

Yes, but why?

Telegram Channel @IRFaraExam

294 More Object-Oriented Programming

Sometimes we want a class that can be used as a polymorphic type, but we need to
guarantee it can never be used as an object. For example, "animal" doesn't really make
sense on its own.

We don't talk about animals; we talk about types of animals. We don't say, "Ooh, look at
that lovely fluffy, white animal." Or, "Yesterday we went to the pet shop and got an animal
and an animal bed." It's just too, well, abstract.

So, an abstract class is kind of like a template to be used by any class that extends it
(inherits from it).

We might want a Worker class and extend it to make Miner, Steelworker,
OfficeWorker, and of course Programmer. But what exactly does a plain Worker do?
Why would we ever want to instantiate one?

The answer is we probably wouldn't want to instantiate one; but we might want to use it as
a polymorphic type, so we can pass multiple worker subclasses between methods and have
data structures that can hold all types of Worker.

We call this type of class an abstract class and when a class has even one abstract method,
it must be declared abstract itself. And all abstract methods must be overridden by any
class that extends it.

This means that the abstract class can give some of the common functionality that would
be available in all its subclasses. For example, the Worker class might have the height,
weight, and age member variables.

It might also have the getPayCheck method, which is not abstract and is the same in all
the subclasses, but a doWork method is abstract and must be overridden, because all the
different types of worker doWork differently.

This leads us neatly to another area of polymorphism that is going to make life easier for
us throughout this book.

Interfaces
An interface is like a class. Phew! Nothing complicated here then. But it's like a class that
is always abstract and has only abstract methods.

We can think of an interface as an entirely abstract class with all its methods abstract and
no member variables either.

OK, so you can just about wrap your head around an abstract class because at least it can
pass on some functionality in its methods that are not abstract and serve as a polymorphic
type. But seriously, this interface seems a bit pointless.

Telegram Channel @IRFaraExam

Polymorphism 295

Let's look at the simplest possible generic example of an interface, then we can discuss
it further.

To define an interface, we type the following:

public interface someInterface{

 void someAbstractMethod();

 // omg I've got no body

 int anotherAbstractMethod();

 // Ahh! Me too

 // Interface methods are always abstract and public

 // implicitly but we could make it explicit if we prefer

 public abstract void

 explicitlyAbstractAndPublicMethod();

 // still no body though

}

The methods of an interface have no body because they are abstract, but they can still have
return types and parameters, or not.

To use an interface, we use the implements keyword after the class declaration:

public class someClass implements someInterface{

 // class stuff here

 /*

 Better implement the methods of the interface

 or we will have errors.

 And nothing will work

 */

 public void someAbstractMethod(){

 // code here if you like

Telegram Channel @IRFaraExam

296 More Object-Oriented Programming

 // but just an empty implementation will do

 }

 public int anotherAbstractMethod(){

 // code here if you like

 // but just an empty implementation will do

 // Must have a return type though

 // as that is part of the contract

 return 1;

 }

 Public void explicitlyAbstractAndPublicMethod(){

 }

}

This enables us to use polymorphism with multiple different objects that are from
completely unrelated inheritance hierarchies. If a class implements an interface, the
whole thing can be passed along or used as if it is that thing – because it is that thing. It is
polymorphic (many things).

We can even have a class implement multiple different interfaces at the same time. Just
add a comma between each interface and list them after the implements keyword. Just
be sure to implement all the necessary methods.

In this book, we will use the interfaces of the Android API more often than we write
our own. In Chapter 13, Anonymous Classes - Bringing Android Widgets to Life, one such
interface we will use in the Java Meet UI app is the OnClickListener interface.

Many things might like to know when they are being clicked. Perhaps a Button or a
TextView widget, and so on. So, using an interface we don't need different methods for
every type of UI element we might like to click.

Telegram Channel @IRFaraExam

Frequently asked questions 297

Frequently asked questions
1. What is wrong with this class declaration?

 private class someClass{

 // class implementation goes here

 }

There are no private classes. Classes can be public or default. Public classes are
public; default classes are private within their own package.

2. What is encapsulation?

Encapsulation is how we contain our variables, code, and methods in a manner that
exposes just the parts and functionality we want to other code.

Summary
In this chapter, we covered more theory than in any other chapter. If you haven't
memorized everything or some of the code seemed a bit too in-depth, then you have still
succeeded completely.

If you just understand that OOP is about writing reusable, extendable, and efficient code
through encapsulation, inheritance, and polymorphism, then you have the potential to be
a Java master.

Simply put, OOP enables us to use other peoples' code even when those other people were
not aware of exactly what we would be doing at the time they wrote the code.

All you must do is keep practicing because we will constantly be using these same
concepts over and over again throughout the book, so you do not need to have even
begun to have mastered them at this point.

In the next chapter, we will be revisiting some concepts from this chapter as well as
looking at some new aspects of OOP and how it enables our Java code to interact with our
XML layouts.

Telegram Channel @IRFaraExam

298 More Object-Oriented Programming

But first, there is an important incoming news flash!

Important note
All the UI elements – TextView, ConstraintLayout,
CalenderView, and Button – are classes too. Their attributes are
member variables and they have loads of methods that we can use to do all
sorts of things with the UI. This could prove useful.

There will much more on this revelation in the next two chapters, but first, we will see how
Android handles trash.

Telegram Channel @IRFaraExam

12
The Stack, the Heap,

and the Garbage
Collector

By the end of this chapter, the missing link between Java and our XML layouts will be fully
revealed, leaving us with the power to add all kinds of widgets to our apps as we have done
before, but this time, we will be able to control them through our Java code.

In this chapter, we will get to take control of some simple UI elements such as Button
and TextView and in the next chapter, we will take things further and manipulate a
whole range of UI elements.

To enable us to understand what is happening, we need to find out a bit more about the
memory in an Android device and two areas of it – the Stack and the Heap.

In this chapter, we will learn about the following:

• Android UI elements are classes

• Garbage collection

Telegram Channel @IRFaraExam

300 The Stack, the Heap, and the Garbage Collector

• Our UI is on the heap?

• Special types of classes, including inner and anonymous

Back to that news flash.

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2012.

All the Android UI elements are classes too
When our app is run and the setContentView method is called from the onCreate
method, the layout is inflated from the XML and instances of the UI classes are loaded
into memory as usable objects. They are stored in a part of the memory called the heap.
The heap is managed by the Android Runtime (ART) system.

Re-introducing references
But where are all these UI objects/classes? We certainly can't see them in our code. And
how on earth do we get our hands on them?

The ART inside every Android device takes care of memory allocation to our apps. In
addition, it stores different types of variables in different places.

Variables that we declare and initialize in methods are stored on the area of memory
known as the Stack. We can stick to our existing warehouse analogy when talking
about the Stack. We already know how we can manipulate variables on the Stack with
straightforward expressions. So, let's talk about the heap and what is stored there.

Important fact
All objects of classes are reference type variables and are just references to the
actual objects that are stored on the heap – they are not the actual objects.

Think of the heap as a separate area of the same warehouse. The heap has lots of floor
space for odd-shaped objects, racks for smaller objects, lots of long rows with smaller-
sized cubby holes, and so on. This is where objects are stored. The problem is we have
no direct access to the heap. Think of it as a restricted access part of the warehouse. You
can't actually go there but you can refer to what is stored there. Let's look at what exactly a
reference variable is.

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2012
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2012
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2012

All the Android UI elements are classes too 301

It is a variable that we refer to and use via a reference. A reference can be loosely but
usefully defined as an address or location. The reference (address or location) of the object
is on the Stack.

So, when we use the dot operator, we are asking Android to perform a task at a specific
location, a location that is stored in the reference.

Why would we ever want a system like this? Just give me my objects on the Stack already.
Here is why.

A quick break to throw out the trash
This is what the whole stack and heap thing does for us.

As we know, the ART system keeps track of all our objects for us and stores them in a
devoted area of our warehouse called the heap. Regularly, while our app is running, ART
will scan the stack, the regular racks of our warehouse, and match up references to objects
that are on the heap. And any objects it finds without a matching reference, it destroys. Or
in Java terminology, it garbage collects.

Think of a very discerning refuse vehicle driving through the middle of our heap,
scanning objects to match up to references (on the stack). No reference? You're garbage
now.

If an object has no reference variable, we can't possibly do anything with it anyway
because we have no way to access it/refer to it. This system of garbage collection helps our
apps run more efficiently by freeing up unused memory.

If this task was left to us, our apps would be much more complicated to code.

So, variables declared in a method are local, on the stack, and only visible within the
method they were declared in. A member variable (in an object) is on the heap and
can be referenced from anywhere there is a reference to it and the access specification
(encapsulation) allows.

Seven facts about the stack and the heap
Let's take a quick look at what we learned about the stack and the heap:

1. Local variables and methods are on the stack and local variables are local to the
specific method within which they were declared.

2. Instance/class variables are on the heap (with their objects) but the reference to the
object (its address), is a local variable on the stack.

Telegram Channel @IRFaraExam

302 The Stack, the Heap, and the Garbage Collector

3. We control what goes on the stack. We can use the objects on the heap but only by
referencing them.

4. The heap is kept clear and up to date by the garbage collector.

5. You don't delete objects but the ART system sends the garbage collector when
it thinks it is appropriate. An object is garbage collected when there is no longer
a valid reference to it. So, when a reference variable, either local or instance,
is removed from the stack, then its related object becomes viable for garbage
collection. And when the ART system decides the time is right (usually very
promptly), it will free up the RAM memory to avoid running out.

6. If we try to reference an object that doesn't exist, we will get a
NullPointerException and the app will crash.

Let's move on and see exactly what this information buys us in terms of taking control of
our UI.

So how does this heap thing help me?
Any UI element that has its id attribute set in the XML layout can have its reference
retrieved from the heap using the findViewById method, which is part of the Activity/
AppCompatActivity class. As it is part of the class that we extend in all our apps, we
have access to it, as this code shows:

Button myButton = findViewById(R.id.myButton);

The preceding code assumes that within the XML layout there is a Button widget with its
id attribute set to myButton. The myButton object now directly refers to the widget in
the XML layout with the id attribute set to myButton.

Note that the findViewById method is also polymorphic and any class that extends the
View class can be retrieved from the UI and it just so happened that everything in the UI
palette extends View.

The sharp-minded reader might notice that we don't use a cast to make sure we are getting
a Button object (as opposed to a TextView or some other View descendant) as we did
when retrieving an Elephant instance descended from an abstract Animal:

someElephant = (Elephant) feed(someElephant);

Telegram Channel @IRFaraExam

All the Android UI elements are classes too 303

The reason for this is that the View class uses Java's generics automatic type inference.
This is an advanced topic that we won't be covering in this book, but it means that the cast
is automatic, and we don't need to write more lengthy code like this:

Button myButton = (Button) findViewById(R.id.myButton);

This ability to grab a reference to anything in the UI is exciting because it means we
can start using all the methods that these objects have. Here are some examples of the
methods we can use for Button objects:

myButton.setText

myButton.setHeight

myButton.setOnCLickListener

myButton.setVisibility

Important note
The Button class alone has around 50 methods!

If you think, after 11 chapters, we are finally going to start doing some neat stuff with
Android, you are right!

Using buttons and TextView widgets from our layout
To follow along with this project, create a new Android Studio project, call it Java Meet
UI, choose the Empty Activity template, and leave all the other options at their defaults.
As usual, you can find the Java code and the XML layout code in the Chapter 12/Java
Meet UI folder.

First, let's build a simple UI by following these steps:

1. In the editor window of Android Studio, switch to activity_main.xml and
make sure you are on the Design tab.

2. Delete the autogenerated TextView, the one that reads "Hello world!".

3. Add a TextView widget at the top center of the layout.

4. Set its text property to 0, its id property to txtValue, and its textSize property
to 40sp. Pay careful attention to the case of the id property's value. It has an
uppercase V.

Telegram Channel @IRFaraExam

304 The Stack, the Heap, and the Garbage Collector

5. Now drag and drop six buttons on the layout so it looks as close as possible to this
next screenshot. The exact layout isn't important:

Figure 12.1 – Layout setup

6. When the layout is how you want it, click the Infer Constraints button to constrain
all the UI items.

7. Edit the properties of each button in turn (left to right, then top to bottom) and set
the text and id properties as shown in the next table. The image that follows the
table should make it clear which button has which values.

Telegram Channel @IRFaraExam

All the Android UI elements are classes too 305

When you're done, your layout should look like the next screenshot:

Figure 12.2 – Final layout

The precise position and text on the buttons are not very important but the values given to
the id properties must be the same as those in the table. The reason for this is we will be
using these IDs to get a reference to the buttons and the TextView in this layout, from
our Java code.

Switch to the MainActivity.java tab in the editor and we will write the code.

Amend this line:

public class MainActivity extends AppCompatActivity{

to

public class MainActivity extends AppCompatActivity implements

 View.OnClickListener{

Telegram Channel @IRFaraExam

306 The Stack, the Heap, and the Garbage Collector

Tip
You will need to import the View class. Be sure to do this before continuing
with the next step or you will get confusing results.

import android.view.View;

Notice that the entire line we just amended is underlined in red showing an error. Now,
because we have made MainActivity into an OnClickListener by adding it as an
interface, we must implement the abstract method required by OnClickListener. The
method is called onClick. When we add the onClick method, the error will be gone.

We can get Android Studio to add it for us by left-clicking anywhere on the line with an
error and then using the keyboard combination Alt + Enter. Left-click the Implement
methods option as shown in the next screenshot.

Figure 12.3 – Implement methods

Now, left-click OK to confirm we want Android Studio to automatically add the onClick
method. The error is gone, and we can carry on adding code. We also have an empty
onClick method and we will soon see what we will do with that.

Now we will declare an int type variable called value and initialize it to 0. We will
also declare six Button objects and a TextView object. We will give them the exact
same Java variable names we gave the id property values in our UI layout. This name
association is not needed but it is useful to keep track of which Button in our Java code
will be holding a reference to which Button from our XML UI layout.

Furthermore, we are declaring them all with the private access specification because we
know they will not be needed outside of this class.

Telegram Channel @IRFaraExam

All the Android UI elements are classes too 307

Before you go ahead and type the code, note that all these variables are members of the
MainActivity class. This means we enter all the code shown next, immediately after
the class declaration (which we amended in the previous step).

Making all these variables into members/fields means they have a class scope and we can
access them from anywhere within the MainActivity class. This will be essential for
this project because we will need to use them in the onCreate method and in our new
onClick method.

Enter this next code that we have just discussed, after the opening curly brace { of the
MainActivity class and before the onCreate method:

// An int variable to hold a value

private int value = 0;

// A bunch of Buttons and a TextView

private Button btnAdd;

private Button btnTake;

private TextView txtValue;

private Button btnGrow;

private Button btnShrink;

private Button btnReset;

private Button btnHide;

Tip
Remember to use the ALT + Enter keyboard combination to import new
classes.

import android.widget.Button;

import android.widget.TextView;

Next, we want to prepare all our variables ready for action. The best place for this to
happen is in the onCreate method because we know that will be called by Android
just before the app is shown to the user. This code uses the findViewById method to
associate each of our Java objects with an item from our UI layout.

It does so by returning a reference to the object associated with the UI widget on the heap.
It "knows" which one we are after because we use the id attribute value as an argument.
For example, ...(R.id.btnAdd) will return the Button widget with the text ADD
that we created in our layout.

Telegram Channel @IRFaraExam

308 The Stack, the Heap, and the Garbage Collector

Enter the following code, just after the call to setContentView in the onCreate
method:

// Get a reference to all the buttons in our UI

// Match them up to all our Button objects we declared earlier

btnAdd = findViewById(R.id.btnAdd);

btnTake = findViewById(R.id.btnTake);

txtValue = findViewById(R.id.txtValue);

btnGrow = findViewById(R.id.btnGrow);

btnShrink = findViewById(R.id.btnShrink);

btnReset = findViewById(R.id.btnReset);

btnHide = findViewById(R.id.btnHide);

Now we have a reference to all our Button widgets and our TextView widget
so now we can start using their methods. In the code that follows, we use the
setOnClickListener method on each of the Button references to make Android
pass any clicks from the user onto our onClick method.

This works because when we implemented the View.OnClickListener interface, our
MainActivity class effectively became an OnClickListener.

So, all we have to do is call setOnClickListener on each button in turn. As a
reminder, the this argument is a reference to MainActivity. So, the method call says,
"Hey Android, I want an OnClickListener and I want it to be the MainActivity
class."

Android now knows which class to call onClick on. This next code wouldn't work if
we hadn't implemented the interface first. Also, we must set up these listeners before the
Activity starts, which is why we do it in onCreate.

Soon, we will add code to the onClick method to handle what happens when a button is
clicked and we will see how we differentiate between all the different buttons.

Add this code after the previous code, inside the onCreate method:

// Listen for all the button clicks

btnAdd.setOnClickListener(this);

btnTake.setOnClickListener(this);

txtValue.setOnClickListener(this);

btnGrow.setOnClickListener(this);

btnShrink.setOnClickListener(this);

btnReset.setOnClickListener(this);

Telegram Channel @IRFaraExam

All the Android UI elements are classes too 309

btnHide.setOnClickListener(this);

Now scroll down to the onClick method that Android Studio added for us after we
implemented the OnClickListener interface. Add the float size; variable
declaration and an empty switch block inside it so it looks like this next code. The new
code to add is highlighted:

public void onClick(View view){

 // A local variable to use later

 float size;

 switch(view.getId()){

 }

}

Remember that switch will check for a case to match the condition inside the switch
statement.

In the previous code, the switch condition is view.getId(). Let's step through and
explain this. The view variable is a reference to an object of type View, which was passed
into the onClick method by Android:

public void onClick(View view)

View is the parent class for Button, TextView, and more. So, perhaps as we might
expect, calling view.getId() will return the id attribute of the UI widget that has been
clicked and triggered the call to onClick in the first place.

All we need to do then is provide a case statement (and appropriate action) for each of
the Button references we want to respond to.

The next code we will see is the first three case statements. They handle R.id.btnAdd,
R.id.btnTake, and R.id.btnReset cases:

• The code in the R.id.btnAdd case simply increments the value variable, then it
does something new.

Telegram Channel @IRFaraExam

310 The Stack, the Heap, and the Garbage Collector

It calls the setText method on the txtValue object. Here is the argument: (""+
value). This argument uses an empty string and adds (concatenates) whatever
value is stored in value to it. This has the effect of causing our TextView
txtValue to display whatever value is stored in value.

• The TAKE button (R.id.btnTake) does exactly the same, only subtracts one
from value instead of adding one.

• The third case statement handles the RESET button and sets value to zero and
again updates the text attribute of txtValue.

Then, at the end of each case, there is a break statement. At this point, the switch
block is exited, the onClick method returns, and life goes back to normal – until the
user's next click.

Enter this code that we have just discussed inside the switch block after the opening
curly brace {:

case R.id.btnAdd:

 value ++;

 txtValue.setText(""+ value);

 break;

case R.id.btnTake:

 value--;

 txtValue.setText(""+ value);

 break;

case R.id.btnReset:

 value = 0;

 txtValue.setText(""+ value);

 break;

The next two case statements handle the SHRINK and GROW buttons from our UI. We
can confirm this from the IDs R.id.btnGrow and R.id.btnShrink. What is new
and more interesting are the two new methods that are used.

Telegram Channel @IRFaraExam

All the Android UI elements are classes too 311

The getTextScaleX method returns the horizontal scale of the text within the object
it is used on. We can see that the object it is used on is our TextView txtValue. The
size = at the start of the line of code assigns that returned value to our float variable
size.

The next line of code in each case statement changes the horizontal scale of the text
using setTextScaleX. When the GROW button is pressed, the scale is set to size +
1, and when the SHRINK button is pressed, the scale is set to size - 1.

The overall effect is to allow these two buttons to grow and shrink the text in the
txtValue widget by a scale of 1 on each click.

Enter the next two case statements that we have just discussed below the previous code:

case R.id.btnGrow:

 size = txtValue.getTextScaleX();

 txtValue.setTextScaleX(size + 1);

 break;

case R.id.btnShrink:

 size = txtValue.getTextScaleX();

 txtValue.setTextScaleX(size - 1);

 break;

In our final case statement, which we will code next, we have an if-else block. The
condition takes a little bit of explaining so let's have sight of it in advance:

if(txtValue.getVisibility() == View.VISIBLE)

The condition to be evaluated is txtValue.getVisibility() == View.VISIBLE.
The first part of that condition before the == operator returns the visibility attribute
of our txtValue TextView. The return value will be one of three possible constant
values as defined in the View class. They are View.VISIBLE, View.INVISIBLE, and
View.GONE.

If TextView is visible to the user on the UI, the method returns View.VISIBLE, the
condition is evaluated as true, and the if block is executed.

Telegram Channel @IRFaraExam

312 The Stack, the Heap, and the Garbage Collector

Inside the if block, we use the setVisibility method on the txtValue object and
make it invisible to the user with the View.INVISIBLE argument.

In addition to this, we change the text on the btnHide widget to SHOW using the
setText method.

After the if block has executed, txtValue is invisible and we have a button on our
UI that says SHOW. When the user clicks it in this state, the if statement will be false
and the else block will execute. In the else block, we reverse the situation. We set
txtValue back to View.VISIBLE and the text property on btnHide back to HIDE.

If this is in any way unclear, just enter the code, run the app, and revisit this last code and
explanation once you have seen it in action:

case R.id.btnHide:

 if(txtValue.getVisibility() == View.VISIBLE)

 {

 // Currently visible so hide it

 txtValue.setVisibility(View.INVISIBLE);

 // Change text on the button

 btnHide.setText("SHOW");

 }else{

 // Currently hidden so show it

 txtValue.setVisibility(View.VISIBLE);

 // Change text on the button

 btnHide.setText("HIDE");

 }

 break;

We have the UI and the code in place, so it is time to run the app and try out all the
buttons.

Telegram Channel @IRFaraExam

All the Android UI elements are classes too 313

Running the app
Run the app in the usual way. Notice that the ADD and TAKE buttons change the value of
value by one in either direction and then display the result in the TextView widget. In
this next screenshot, I have clicked the ADD button three times.

Figure 12.4 – Add button example

Telegram Channel @IRFaraExam

314 The Stack, the Heap, and the Garbage Collector

Notice that the SHRINK and GROW buttons increase the width of the text and RESET
sets the value variable to 0 and displays it on the TextView widget. In this next
screenshot, I have clicked the GROW button eight times.

Figure 12.5 – Grow button example

Finally, the HIDE button not only hides the TextView but changes its own text to
SHOW and will indeed re-show the TextView if tapped again.

Tip
I will not bother you by showing you an image of something that is hidden. Be
sure to try the app.

Notice that there was no need for the Log or Toast classes in this app as we are finally
manipulating the UI using our Java code. Let's dig even deeper into manipulating the UI
with our code by exploring inner and anonymous classes.

Telegram Channel @IRFaraExam

Inner and anonymous classes 315

Inner and anonymous classes
Before we go ahead to the next chapter and build apps with loads of different widgets that
will put into practice and reinforce everything we have learned in this chapter, we will
have a very brief introduction to Anonymous and Inner classes.

When we implemented our basic classes demo app in Chapter 10, Object-Oriented
Programming, we declared and implemented the class in a separate file to our
MainActivity class. That file had to have the same name as the class. This is the way to
create a regular class.

We can also declare and implement classes within a class. Other than how we do this, the
only question remaining, of course, is why would we do this?

When we implement an inner class, the inner class can access the member variables of the
enclosing class and the enclosing class can access the members of the inner class.

This often makes the structure of our code more straightforward. So inner classes are
sometimes the way to go.

In addition, we can also declare and implement an entire class within a method of one of
our classes. When we do so, we use a slightly different syntax and do not use a name with
the class. This is an anonymous class.

We will see both inner and anonymous classes in action throughout the rest of the book
and we will thoroughly discuss them when we use them.

Frequently asked questions
1. I don't get it all and actually I have more questions now than I had at the start of the

chapter. What should I do?

You know enough about OOP to make considerable progress with Android and
any other type of Java programming. If you are desperate to know more about
OOP right now, there are plenty of books that discuss nothing but OOP. However,
practice and familiarity with the syntax will go a long way to achieving the same
thing and will be more fun. This is exactly what we will do for the rest of the book.

Telegram Channel @IRFaraExam

316 The Stack, the Heap, and the Garbage Collector

Summary
In this chapter, we finally had some real interaction between our code and our UI. It turns
out that every time we add a widget to our UI, we are adding an instance of a class that we
can access with a reference in our Java code. All these objects are stored in a separate area
of memory called the heap – along with any classes of our own.

We are now in a position where we can learn about and do cool things with some of the
more interesting widgets. We will look at loads of them in the next chapter, and then keep
introducing further new widgets throughout the rest of the book as well.

Telegram Channel @IRFaraExam

13
Anonymous Classes

– Bringing Android
Widgets to Life

This chapter could have been called Even More OOP, as anonymous classes are very much
still part of that subject. However, as you will see, anonymous classes offer us so much
flexibility, especially when it comes to interacting with the User Interface (UI), that I
thought they deserved a chapter dedicated to them and their key use in Android.

Now that we have a good overview of both the layout and coding of an Android app,
along with our newly acquired insight into Object-Oriented Programming (OOP), and
how we can manipulate the UI from our Java code, we are ready to experiment with more
widgets from the palette alongside anonymous classes.

OOP is a tricky thing at times, and anonymous classes are known to be a bit awkward for
beginners. However, by gradually learning these new concepts and then practicing them
repeatedly, over time, they will become our friends.

In this chapter, we will diversify a lot by going back to the Android Studio palette and
looking at half a dozen widgets that we have either not seen at all or have not fully used
yet.

Telegram Channel @IRFaraExam

318 Anonymous Classes – Bringing Android Widgets to Life

Once we have done this, we will put them all into a layout and practice manipulating them
with Java code.

In this chapter, we will focus on the following topics:

• Declaring and initializing layout widgets

• Creating widgets with just Java code

• The EditText, ImageView, RadioButton (and RadioGroup), Switch,
CheckBox, and TextClock widgets

• Using WebView

• How to use an anonymous class

• Making a widget demo mini app using all of the preceding widgets and some
anonymous classes

Let's begin with a quick recap.

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2013.

Declaring and initializing the objects
We know that when we call the setContentView method from the onCreate
method, Android inflates all the widgets and layouts and turns them into real Java objects
on the heap.

Additionally, we know that to use a widget from the heap, we must first declare an object
of the correct type and then use it to get a reference to the UI widget object on the heap by
using its unique id property.

For example, we get a reference to a TextView widget with an id property of txtTitle
and assign it to a new Java object, called myTextView, as follows:

// Grab a reference to an object on the heap

TextView myTextView = findViewById(R.id.txtTitle);

Telegram Channel @IRFaraExam

Creating UI widgets from pure Java without XML 319

Now, using our myTextView instance variable, we can do anything that the TextView
class was designed to do. For example, we can set the text to show the following:

myTextView.setText("Hi there");

Additionally, we can make it disappear as follows:

// Bye bye

myTextView.setVisibility(View.GONE)

We can change its text again and make it reappear:

myTextView.setText("BOO!");

// Surprise

myTextView.setVisibility(View.VISIBLE)

It is worth mentioning we can manipulate any property in Java that we set using XML
in the previous chapters. Furthermore, we have hinted at – but not actually seen – the
creation of widgets from nothing, using just Java code.

Creating UI widgets from pure Java without
XML
We can also create widgets from Java objects that are not a reference to an object in our
layout. We can declare, instantiate, and set a widget's attributes all in code, as follows:

Button myButton = new Button();

The preceding code creates a new Button by using the new() keyword. The only caveat
is that the Button has to be part of a layout before it can be seen by the user. So, we could
either get a reference to a layout element from our XML layout or create a new one, in
code.

If we assume that we have a LinearLayout in our XML with an id property equal
to linearLayout1, we could put our Button from the earlier line of code into it, as
follows:

// Get a reference to the LinearLayout

LinearLayout linearLayout = (LinearLayout)

Telegram Channel @IRFaraExam

320 Anonymous Classes – Bringing Android Widgets to Life

 findViewById(R.id.linearLayout);

// Add our Button to it

linearLayout.addView(myButton);

We could even create an entire layout in pure Java code by, first, creating a new layout and
then all the widgets we want to add. Then, finally, we call the setContentView method
on the layout that has our widgets.

In the following code, we have created a layout in pure Java, albeit a very simple one with a
single Button inside a LinearLayout:

// Create a new LinearLayout

LinearLayout linearLayout = new LinearLayout();

// Create a new Button

Button myButton = new Button();

// Add myButton to the LinearLayout

linearLayout.addView(myButton);

// Make the LinearLayout the main view

setContentView(linearLayout);

It is probably obvious – but well worth pointing out – that designing a detailed and
nuanced layout using only Java is significantly more awkward, harder to visualize, and
not the way it is usually done. However, there are times when we will find it useful to do
things this way.

We are getting quite advanced now with layouts and widgets. However, it is evident that
there are a whole bunch of other widgets from the palette that we have not explored or
interacted with. So, let's fix that.

Exploring the palette – part 1
Let's take a whirlwind tour of some of those previously unexplored/unused items from
the palette. Then, we can drag a bunch of them onto a layout and see some of the methods
they have that might be useful. We can then implement a project to put them all to use.

We already explored the Button and TextView widgets in the last chapter. Let's take a
closer look at some additional widgets.

Telegram Channel @IRFaraExam

Exploring the palette – part 1 321

The EditText widget
The EditText widget does as its name suggests. If we make an EditText widget
available to our users, then they will indeed be able to edit the text inside it. We looked at
this in an earlier chapter; however, we didn't actually achieve anything with it. What we
didn't explore was how to capture the information from within it, or where we would type
this text-capturing code.

The following block of code assumes that we have declared an object of the EditText
type and used it to get a reference to an EditText widget in our XML layout. We might
write code similar to the following code for a button click, for example, a submit button
for a form. However, it could go anywhere we deem necessary for our app:

String editTextContents = editText.getText()

// editTextContents now contains whatever the user entered

We will use this in a real-life context in the next mini-app.

The ImageView widget
We have already put an image onto our layout a couple of times so far, but we have never
got a reference to one from our Java code or done anything with it before. The process of
getting a reference to an ImageView widget is the same as any other widget:

• Declare an object.

• Get a reference using the findViewById method and a valid id property, such as
the following:

ImageView imageView = findViewById(R.id.imageView);

Then, we can go on to do some quite neat things with our image by using code that is
similar to the following:

// Make the image 50% TRANSPARENT

imageView.setAlpha(.5f);

Important note
The odd-looking f simply lets the compiler know the value is of the float
type, as required by the setAlpha method.

Telegram Channel @IRFaraExam

322 Anonymous Classes – Bringing Android Widgets to Life

In the preceding, we use the setAlpha method on imageView. The setAlpha
method takes a value between 0 and 1. An image that is completely see-through is 0,
while an image with no transparency at all is 1.

Tip
There is also an overloaded setAlpha method that takes an integer value
from 0 (completely see-through) to 255 (no transparency). We can choose
whichever is the most appropriate at the time. If you want a reminder about
method overloading, please refer back to Chapter 9, Learning Java Methods.

We will use some of the ImageView class' methods in our next app.

Radio buttons and groups
A RadioButton widget is used when there are two or more mutually exclusive options
for the user to choose from. This means that when one option is chosen, the other options
are not – just like on an old-fashioned radio. Take a look at a simple RadioGroup with
a few RadioButton widgets in the following screenshot:

Figure 13.1 – RadioButton widget

As the user selects a choice, the other options will automatically be deselected. We control
RadioButton widgets by placing them within a RadioGroup in our UI layout. We
can, of course, use the visual designer to simply drag a bunch of RadioButtons onto a
RadioGroup. When we do so within a ConstraintLayout layout, the XML will look
similar to the following:

<RadioGroup

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 tools:layout_editor_absoluteX="122dp"

 tools:layout_editor_absoluteY="222dp" >

 <RadioButton

Telegram Channel @IRFaraExam

Exploring the palette – part 1 323

 android:id="@+id/radioButton1"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="Option 1" />

 <RadioButton

 android:id="@+id/radioButton2"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="Option 2" />

 <RadioButton

 android:id="@+id/radioButton3"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="Option 3" />

</RadioGroup>

Note, as highlighted in the previous code, that each RadioButton instance has an
appropriate id attribute set. We can then get a reference to them, as we might expect, as
this code shows us:

// Get a reference to all our widgets

RadioButton rb1 = findViewById(R.id.radioButton1);

RadioButton rb2 = findViewById(R.id.radioButton2);

RadioButton rb3 = findViewById(R.id.radioButton3);

In practice, however, as you will see, we can manage almost everything from the
RadioGroup reference alone. Additionally, you will learn that we can assign an id
property to the RadioGroup widget for this purpose.

Telegram Channel @IRFaraExam

324 Anonymous Classes – Bringing Android Widgets to Life

You might be thinking, how do we know when they have been clicked on? Or, you might
wonder whether keeping track of the one that has been selected might be awkward. We
will need some help from the Android API and Java in the form of anonymous classes.

Anonymous classes
In Chapter 12, The Stack, the Heap, and the Garbage Collector, we briefly introduced
anonymous classes. Here, we will discuss it in a little more detail and examine how they
can help us. When a RadioButton widget is part of a RadioGroup widget, the visual
appearance of them all is coordinated for us. All we need to do is react when any given
RadioButton widget is pressed. Of course, as with any other button, we need to know
when they have been clicked on.

A RadioButton widget behaves differently to a regular Button, and simply listening
for clicks in onClick (after implementing OnClickListener) will not work because
RadioButton is not designed that way.

What we need to do is use another Java feature. We need to implement a class, that is, an
anonymous class, for the sole purpose of listening for clicks on the RadioGroup widget.
The next block of code assumes that we have a reference to a RadioGroup widget, called
radioGroup. Here is the code:

radioGroup.setOnCheckedChangeListener(

 new RadioGroup.OnCheckedChangeListener() {

 @Override

 public void onCheckedChanged(RadioGroup group,

 int checkedId) {

 // Handle clicks here

 }

 }

);

The preceding code, specifically, RadioGroup.OnCheckedChangedListener from
its opening { to closing }, is what is known as an anonymous class. This is because it has
no name.

Telegram Channel @IRFaraExam

Anonymous classes 325

If we place the preceding code in the onCreate method, then, surprisingly, the code
does not run when onCreate is called. It simply prepares the new anonymous class to be
ready to handle any clicks on radioGroup. We will now discuss this in more detail.

This class is more technically known as an anonymous inner class because it is inside
another class. Inner classes can be anonymous or have names. We will learn about inner
classes with names in Chapter 16, Adapters and Recyclers.

I remember the first time I saw an anonymous class, and it made me want to hide in a
cupboard. However, it is not as complex as it might appear at first.

What we are doing is adding a listener to radioGroup. This has, very much, the same
effect as when we implemented View.OnClickListener in Chapter 12, The Stack, the
Heap, and the Garbage Collector. However, this time, we are declaring and instantiating
a listener class, preparing it to listen to radioGroup, while simultaneously overriding
the required method, which, in this case, is onCheckedChanged. This is like the
RadioGroup equivalent of onClick.

Let's step through the process:

1. First, we call the setOnCheckedChangedListener method on our
radioGroup instance:

radioGroup.setOnCheckedChangeListener(

2. We then provide a new anonymous class implementation that includes
the details of this class' overridden method as an argument to the
setOnCheckedChangedListener method:

new RadioGroup.OnCheckedChangeListener() {

 @Override

 public void onCheckedChanged(RadioGroup group,

 int checkedId) {

 // Handle clicks here

 }

}

Telegram Channel @IRFaraExam

326 Anonymous Classes – Bringing Android Widgets to Life

3. Finally, we have the closing parenthesis of the method along with, of course, the
semicolon to mark the end of the line of code. The only reason we present it on
multiple lines is to make it more readable. As far as the compiler is concerned, it
could be all lumped together:

);

If we use the preceding code to create and instantiate a class that listens for clicks to
our RadioGroup, perhaps in the onCreate method, it will listen and respond for
the entire life of the Activity. All we need to learn now is how to handle the clicks in the
onCheckedChanged method that we override.

Notice that one of the parameters of the onCheckedChanged method, which is passed
in when radioGroup is pressed, is int checkedId. This holds the id property of the
currently selected RadioButton widget. This is just what we need – well, almost.

It might be surprising to know that checkedId is an int. Android stores all IDs as int,
even though we declare them with alphanumeric characters such as radioButton1 and
radioGroup.

All our human-friendly names are converted into integers when the app is compiled.
So, how do we know which integer value refers to which id attribute value such as
radioButton1 or radioButton2?

What we need to do is to get a reference to the actual object that the integer is an identifier
for. We can do so by using the int CheckedId parameter and then asking the object
for its human-friendly id attribute value. We do this as follows:

RadioButton rb = group.findViewById(checkedId);

Now, we can retrieve the familiar id attribute value that we used for the currently selected
RadioButton widget, for which we now have a reference stored in rb, using the getId
method, as follows:

rb.getId();

We could, therefore, handle any RadioButton widget clicks by using a switch
block with a case, for each possible RadioButton widget that could be pressed, and
rb.getId(), as the switch block's expression.

Telegram Channel @IRFaraExam

Anonymous classes 327

Th following code shows the entire contents of the onCheckedChanged method that we
just discussed:

// Get a reference to the RadioButton

// that is currently checked

RadioButton rb = group.findViewById(checkedId);

// Switch based on the 'friendly' id from the XML layout

switch (rb.getId()) {

 case R.id.radioButton1:

 // Do something here

 break;

 case R.id.radioButton2:

 // Do something here

 break;

 case R.id.radioButton3:

 // Do something here

 break;

}

// End switch block

To make this clearer, we will view this in action in the next working app, where we can
press the buttons in real time.

Let's continue with our palette exploration.

Telegram Channel @IRFaraExam

328 Anonymous Classes – Bringing Android Widgets to Life

Exploring the palette and more anonymous
classes – part 2
Now that we have seen how anonymous classes work, specifically with RadioGroup and
RadioButton, we can continue to explore the palette and examine how anonymous
classes work with some more UI widgets.

Switch
The Switch (not to be confused with the lowercase switch Java keyword) widget is just
like a Button widget, except it has two possible states that can be read and responded to.

One obvious use for the Switch widget is to show or hide something. Remember that in
our Java Meet UI app, in Chapter 12, The Stack, the Heap, and the Garbage Collector, we
used a Button widget to show and hide a TextView widget.

Each time we hid or showed the TextView widget, we changed the text property
on the Button widget to make it clear what would happen if it was clicked on again.
What might have been more intuitive for the user, and more straightforward for us as
programmers, would have been to use a Switch widget, as follows:

Figure 13.2 – Switch widget

The following code assumes that we already have an object called mySwitch, which is
a reference to the Switch object in the layout. We could show and hide a TextView
widget just like we did in our Java Meet UI app in Chapter 12, The Stack, the Heap, and the
Garbage Collector.

To listen for and respond to clicks, we, again, use an anonymous class. However, this time,
we use the CompoundButton version of OnCheckedChangedListener instead of
the RadioGroup version.

We need to override the onCheckedChanged method, and that method has a Boolean
parameter, called isChecked. The isChecked variable is simply false for off and
true for on.

Telegram Channel @IRFaraExam

Exploring the palette and more anonymous classes – part 2 329

Here is how we could, more intuitively, replace that text hiding/showing code from
Chapter 12, The Stack, the Heap, and the Garbage Collector:

mySwitch.setOnCheckedChangeListener(

 new CompoundButton.OnCheckedChangeListener() {

 public void onCheckedChanged(

 CompoundButton buttonView, boolean

 isChecked) {

 if(isChecked){

 // Currently visible so hide it

 txtValue.setVisibility(View.

 INVISIBLE);

 }else{

 // Currently hidden so show it

 txtValue.setVisibility(View.

 VISIBLE);

 }

 }

 }

);

If the anonymous class code still looks a little odd, don't worry because it will become
more familiar as you keep using it. We will do so now when we look at the CheckBox
widget.

CheckBox
This is a CheckBox widget. It is either checked or unchecked. In the following screenshot,
it is checked:

Figure 13.3 – CheckBox widget

Telegram Channel @IRFaraExam

330 Anonymous Classes – Bringing Android Widgets to Life

With a CheckBox widget, we can simply detect its state (checked or unchecked) at a
given moment – for example, at the moment when a specific button is clicked on. The
following code gives us a glimpse at how this might happen, again using an inner class to
act as a listener:

myCheckBox.setOnCheckedChangeListener(

 new CompoundButton.OnCheckedChangeListener() {

 public void onCheckedChanged(

 CompoundButton buttonView, boolean

 isChecked) {

 if (myCheckBox.isChecked()) {

 // It's checked so do something

 } else {

 // It's not checked do something else

 }

 }

 }

);

In the previous code, we assume that myCheckBox has been declared and initialized.
Then, we use the same type of anonymous class that we did for Switch, in order to detect
and respond to clicks.

TextClock
In our next app, we will use the TextClock widget to show off some of its features. We
will need to add the XML directly, as this widget is not available to drag and drop from the
palette. The TextClock widget looks similar to the following screenshot:

Figure 13.4 – TextClock widget

Telegram Channel @IRFaraExam

The Widget Exploration app 331

Let's look at an example of using TextClock. This is how we would set its time to the
same time as it is in Brussels, Europe:

tClock.setTimeZone("Europe/Brussels");

The preceding code assumes that tClock is a reference to a TextClock widget in the
layout.

Using WebView
WebView is quite a powerful widget. It can be used to show a web page in your app's UI.
You can even implement a basic web browser app with just half a dozen lines of code.

Tip
Normally, you wouldn't implement an entire web browser; rather, you would
use the user's preferred web browser.

To simply get a reference to a WebView widget that is present in the XML and display a
website, you would only need two lines of code. This code loads my website – https://
gamecodeschool.com – assuming that there is a WebView widget in the layout with
the id property set to webView:

WebView webView = findViewById(R.id.webView);

webView.loadUrl("https://gamecodeschool.com");

With all of this extra information, let's make an app that uses the Android widgets more
extensively than we have so far.

The Widget Exploration app
So far, we have discussed seven widgets: EditText, ImageView, RadioButton (and
RadioGroup), Switch, CheckBox, TextClock, and WebView. Let's make a working
app and do something real with each of them. We will also use a Button widget and a
TextView widget again.

Remember that you can refer to the completed code in the download bundle. This app can
be found in Chapter 13/Widget Exploration.

Telegram Channel @IRFaraExam

https://gamecodeschool.com
https://gamecodeschool.com

332 Anonymous Classes – Bringing Android Widgets to Life

Setting up the Widget Exploration project and UI
First, we will set up a new project and prepare the UI layout. These steps will arrange all
the widgets on the screen and set the id properties, ready to grab a reference to them. It is
useful to look at the target layout – while it is up and running – before we get started. Take
a look at the following screenshot:

Figure 13.5 – Widget exploration layout

Here is how this app will demonstrate these widgets:

• The radio buttons allow the user to change the time displayed on the clock to a
choice of three time zones.

• The Capture button, when clicked on, will change the text of the TextView widget
(which is on the right) to whatever is currently in the EditText widget (which is
on the left).

• The three CheckBox widgets will add and remove visual effects from the Android
robot image.

Telegram Channel @IRFaraExam

The Widget Exploration app 333

• The Switch widget will turn on and off the TextView widget, which displays
information entered in the EditText widget and is captured at the push of a
button.

• The WebView widget will occupy the full width and bottom half of the app. Keep
this in mind when adding widgets to the layout; try and get them all in the top half.

The exact layout positions are not essential, but the id properties that are specified must
match exactly. If you just want to view/use the code, you can find all of the files in the
Chapter 13/Widget Exploration folder of the download bundle.

So, let's perform the following steps to set up a new project and prepare the UI layout:

1. Create a new project, called Widget Exploration. Set the Minimum SDK to
API 17:Android 4.2 (Jelly Bean). Then, use an Empty Activity and keep
all the other settings at their defaults. We are using API 17 because one of the
features of the TextClock widget requires us to. We can still support in excess of
99% of all Android devices.

2. Switch to the activity_main.xml layout file and make sure you are in the
design view. Delete the default Hello World! TextView widget.

3. Using the drop-down controls that are displayed above the design view (as shown in
the following screenshot), select a tablet in landscape orientation. I chose the Pixel
C option:

Figure 13.6 – Selecting the orientation options

Important note
For a reminder of how to make a tablet emulator, please refer to Chapter 3,
Exploring Android Studio and the Project Structure. For additional advice on
how to manipulate the orientation of the emulator, please refer to Chapter 5,
Beautiful Layouts with CardView and ScrollView.

Telegram Channel @IRFaraExam

334 Anonymous Classes – Bringing Android Widgets to Life

4. Drag a Switch widget from the Button category of the palette to near the upper-
right corner of the layout. Then, just below this, add a TextView widget. The upper-
right corner of your layout should now look similar to the following screenshot:

Figure 13.7 – Switch widget to the layout

5. Drag three CheckBox widgets, one above the other. Then, drag an ImageView
widget below them onto the central area of the layout. In the resulting pop-up
Resources dialog window, choose sym_def_app_icon to use the Android icon
as the image for the ImageView. The central portion of the layout should now look
similar to the following screenshot. For more context on the final layout, please refer
back to the screenshot showing the completed app:

Figure 13.8 – CheckBox widget

Telegram Channel @IRFaraExam

The Widget Exploration app 335

6. Drag RadioGroup to the upper-left corner of the layout.

7. Add three RadioButton widgets within the RadioGroup. This step can be easily
done using the Component Tree window.

8. Underneath RadioGroup, drag a Plain Text widget from the Text category of the
palette. Remember, despite its name, this is a widget that allows the user to type
some text into it. Later, we will learn how to capture and use the entered text.

9. Add a Button widget underneath the Plain Text widget. The left-hand side of your
layout should look similar to the following screenshot:

Figure 13.9 – Adding a Button widget

10. Now, add the following attributes to the widgets we have just laid out:

Telegram Channel @IRFaraExam

336 Anonymous Classes – Bringing Android Widgets to Life

Important note
Note that some of the attributes might already be correct by default.

Telegram Channel @IRFaraExam

The Widget Exploration app 337

11. The penultimate widget is a bit different, so I thought we would handle it separately.
Add another regular TextView widget underneath the Button widget on the left-
hand side, and set its id property to textClock. Remember to keep this widget,
as with all of the other widgets, above the approximate halfway point vertically.
Readjust some of the widgets above it if required.

12. Switch to the code view and find the TextView widget that we are working on –
the one with textClock as its id property value.

13. Observe the start of the XML code, as shown in the following code snippet, with a
couple of key parts highlighted:

<TextView

 android:id="@+id/textClock"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="TextView"

 ...

 ...

Change the preceding highlighted code to the following:
<TextClock

 android:id="@+id/textClock"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:format12Hour="hh:mm:ss a"

 ...

 ...

Notice that we have changed the type of widget from TextView to TextClock,
and we have deleted the text property and replaced it with the format that we
would like for our clock.

14. Switch to the Design tab.

15. Now it's time for the final widget. Drag a WebView widget from the Widgets
section of the palette and add it to the bottom of the layout in the center. All might
not be as you expect. The WebView widget is apparently missing. In fact, if you
look very carefully, you can see a tiny indication that the widget is in the upper-left
corner of the layout. We will configure the position and size of the WebView widget
slightly differently.

Telegram Channel @IRFaraExam

338 Anonymous Classes – Bringing Android Widgets to Life

16. Make sure that the WebView widget is selected in the component tree window.

17. Change the id attribute to webView (if it isn't this value already).

18. For this next step to work correctly, all the other widgets must be constrained.
Therefore, click on the Infer Constraints button to secure all of the other widgets.

19. At the moment, our WebView widget is not constrained to anything, and it is not
possible to grab the constraint handles that we need. Now, find the Layout section
in the attributes window, as shown in the following screenshot:

Figure 13.10 – Adding constraint

20. Left-click on the add constraint to the bottom button, as highlighted in the previous
screenshot. Now, we have a constraint where the bottom of the WebView widget
is constrained to the bottom of the layout. This is almost perfect, but the default
margin is set very high.

21. Find the layout_margin_bottom property in the properties window and
change it to 0dp.

22. Change the layout_height property in the properties window to 400dp. Note
that when this project is complete, if your WebView widget is too tall or too short,
then you can come back and tweak this value.

23. Tweak your layout to resemble the following reference diagram as much as possible.
However, if you have the appropriate types of UI with the correct id attributes,
then the code will still work even if the layout isn't identical. Remember that the
WebView widget is not visible, but it will take up the entire bottom half of the
screen once we have done some coding:

Telegram Channel @IRFaraExam

The Widget Exploration app 339

Figure 13.11 – Tweaking layout

We have just laid out and set the required attributes for our layout. There is nothing here
that we haven't done before, except that some of the widget types are new to us and the
layout is slightly more intricate.

Now we can get on with using all of these widgets in our Java code.

Coding the Widget Exploration app
There are many import statements needed for this app. So, let's add them all now to save
us from having to mention them all the time. Add the following import statements:

import android.graphics.Color;

import android.graphics.PorterDuff;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.util.Log;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.widget.AnalogClock;

import android.widget.Button;

import android.widget.CheckBox;

import android.widget.CompoundButton;

import android.widget.EditText;

import android.widget.ImageView;

import android.widget.RadioButton;

import android.widget.RadioGroup;

import android.widget.Switch;

Telegram Channel @IRFaraExam

340 Anonymous Classes – Bringing Android Widgets to Life

import android.widget.TextClock;

import android.widget.TextView;

Let's get a reference to all the parts of the UI that we will be using in the Java code.

Getting a reference to all the parts of the UI
This next block of code looks quite long and sprawling, but all we are doing is getting a
reference to each of the widgets in our layout. When we come to use them, we will discuss
the code in more detail.

The only thing that is new in this next block of code is that some of the objects are
declared as final. This is needed as they are going to be used within an anonymous
class.

But doesn't final mean that the object cannot be changed?
If you recall Chapter 11, More Object-Oriented Programming, we learned that
variables declared as final could not be changed, that is, they are a constant.
So, how are we going to change the attributes of these objects? Remember that
objects are reference type variables. This means that they refer to an object
on the heap. They are not the object themselves. We can think of them as
holding an address of an object. It is the address that cannot change. We can
still use the address to reference the object on the heap and change the actual
object as much as we like. Let's take the address analogy further. If you live at
a particular address and if the address is final, then you cannot move to a new
house. However, you are unrestricted in what you can do at that address. For
example, you can still rearrange your house, perhaps repaint the living room,
and put the bath in the kitchen and the sofa on the roof.

Enter the following code just after the call to the setContentView method in the
onCreate method:

// Get a reference to all our widgets

RadioGroup radioGroup =

findViewById(R.id.radioGroup);

final EditText editText =

findViewById(R.id.editText);

Telegram Channel @IRFaraExam

The Widget Exploration app 341

final Button button =

findViewById(R.id.button);

final TextClock tClock =

findViewById(R.id.textClock);

final CheckBox cbTransparency =

findViewById(R.id.checkBoxTransparency);

final CheckBox cbTint =

findViewById(R.id.checkBoxTint);

final CheckBox cbReSize =

findViewById(R.id.checkBoxReSize);

final ImageView imageView =

findViewById(R.id.imageView);

Switch switch1 = (Switch) findViewById(R.id.switch1);

final TextView textView =

findViewById(R.id.textView);

// Hide the TextView at the start of the app

textView.setVisibility(View.INVISIBLE);

We now have a reference, in our Java code, to all of the UI elements in our layout that we
need to manipulate.

Coding the checkboxes
Now, we can create an anonymous class to listen for and handle clicks on the checkboxes.
The next three blocks of code each implement an anonymous class for each of the
checkboxes in turn. However, what is different in each of the following three blocks of
code is how we respond to a click; we will discuss each in turn.

Telegram Channel @IRFaraExam

342 Anonymous Classes – Bringing Android Widgets to Life

Changing the transparency
The first checkbox is labeled Transparency, and we use the setAlpha method in
imageView to change how transparent (or see-through) it is. The setAlpha method
takes a floating-point value between 0 and 1 as an argument.

0 is invisible, and 1 refers to no transparency at all. So, when this checkbox is checked,
we set the alpha to .1, which means that the image is barely visible. And when it is
unchecked, we set it to 1, which means that it is completely visible with no transparency.
The boolean isChecked parameter of onCheckedChanged contains true or
false to show whether the checkbox is checked or not.

Add this code after the previous block of code in the onCreate method:

/*

 Now we need to listen for clicks

 on the button, the CheckBoxes

 and the RadioButtons

*/

// First the check boxes using an anonymous class

cbTransparency.setOnCheckedChangeListener(new

CompoundButton.OnCheckedChangeListener(){

 public void onCheckedChanged(

 CompoundButton buttonView, boolean isChecked){

 if(cbTransparency.isChecked()){

 // Set some transparency

 imageView.setAlpha(.1f);

 }else{

 imageView.setAlpha(1f);

 }

 }

});

In the next anonymous class, we will handle the checkbox labeled Tint.

Telegram Channel @IRFaraExam

The Widget Exploration app 343

Changing the color
In the onCheckedChanged method, we use the setColorFilter method in
imageView to overlay a color layer on the image. When isChecked is true, we layer a
color, and when isChecked is false, we remove it.

The setColorFilter method takes a color in ARGB (Alpha, Red, Green, and Blue)
format as an argument. The color is provided by the static method, argb, of the Color
class. The four arguments of the argb method are, as you might expect, values for alpha,
red, green, and blue. These four values create a color. In our case, the value of 150, 255, 0,
0 creates a strong red tint. Alternatively, the value of 0, 0, 0, 0 creates no tint at all.

Important note
To understand more about the Color class, check out the Android developer
site at http://developer.android.com/reference/
android/graphics/Color.html. Additionally, to understand the
RGB color system in more detail, please refer to the following Wikipedia page:
https://en.wikipedia.org/wiki/RGB_color_model.

Add this code after the previous block of code in the onCreate method:

// Now the next checkbox

cbTint.setOnCheckedChangeListener(new

CompoundButton.OnCheckedChangeListener() {

 public void onCheckedChanged(CompoundButton

 buttonView, boolean isChecked) {

 if (cbTint.isChecked()) {

 // Checked so set some tint

 imageView.setColorFilter(

 Color.argb(150, 255, 0, 0));

 } else {

 // No tint needed

 imageView.setColorFilter(Color.argb(0, 0,

 0, 0));

 }

Telegram Channel @IRFaraExam

http://developer.android.com/reference/android/graphics/Color.html
http://developer.android.com/reference/android/graphics/Color.html
https://en.wikipedia.org/wiki/RGB_color_model

344 Anonymous Classes – Bringing Android Widgets to Life

 }

});

Now we will look at how to scale the UI.

Changing the size
In the anonymous class that handles the labeled Resize checkbox, we use the setScaleX
method to resize the robot image. When we call setScaleX(2) and setScaleY(2)
in imageView, we will double the size of the image, and setScaleX(1) and
setScaleY(1) will return it to normal.

Add this code after the previous block of code in the onCreate method:

// And the last check box

cbReSize.setOnCheckedChangeListener(

new CompoundButton.OnCheckedChangeListener() {

 public void onCheckedChanged(

 CompoundButton buttonView, boolean isChecked) {

 if (cbReSize.isChecked()) {

 // It's checked so make bigger

 imageView.setScaleX(2);

 imageView.setScaleY(2);

 } else {

 // It's not checked make regular size

 imageView.setScaleX(1);

 imageView.setScaleY(1);

 }

 }

});

Now we will handle the three radio buttons.

Telegram Channel @IRFaraExam

The Widget Exploration app 345

Coding the radio buttons
As they are part of a RadioGroup widget, we can handle them much more succinctly
than we did the CheckBox objects. Here is how we do it.

First, we make sure they are clear to start with, by calling clearCheck()
in radioGroup. Then, we create our anonymous class of the
OnCheckedChangedListener type and override the onCheckedChanged method.

This method will be called when any RadioButton widget from RadioGroup is clicked
on. All we need to do is get the id property of the RadioButton widget that was clicked
on and respond accordingly. We can achieve this by using a switch statement with three
possible cases, one for each RadioButton.

You will remember that when we first talked about RadioButton widgets, we mentioned
that the value supplied in the checkedId parameter of the onCheckedChanged
method is an integer. This is why we must first create a new RadioButton instance from
the checkedId parameter:

RadioButton rb =

(RadioButton) group.findViewById(checkedId);

Then, we can call getId on the new RadioButton instance as the condition for the
switch block:

switch (rb.getId())

Then, in each case option, we use the setTimeZone method with the proper Android
time zone code as an argument.

Tip
You can view all the Android time zone codes at https://gist.
github.com/arpit/1035596.

Take a look at the following code, which incorporates everything we just discussed.
Add it to the onCreate method after the previous code that we entered to handle the
checkboxes:

// Now for the radio buttons

// Uncheck all buttons

radioGroup.clearCheck();

radioGroup.setOnCheckedChangeListener(new RadioGroup.

Telegram Channel @IRFaraExam

https://gist.github.com/arpit/1035596
https://gist.github.com/arpit/1035596

346 Anonymous Classes – Bringing Android Widgets to Life

OnCheckedChangeListener() {

@Override

public void onCheckedChanged(

RadioGroup group, int checkedId) {

 RadioButton rb =

 group.findViewById(checkedId);

 switch (rb.getId()) {

 case R.id.radioButtonLondon:

 tClock.setTimeZone(

 "Europe/London");

 break;

 case R.id.radioButtonBeijing:

 tClock.setTimeZone("Etc/GMT-

 8");

 break;

 case R.id.radioButtonNewYork:

 tClock.setTimeZone(

 "America/New_York");

 break;

 }// End switch block

 }

});

Now for something a little bit new.

Telegram Channel @IRFaraExam

The Widget Exploration app 347

Using an anonymous class for a regular Button
In the next block of code, we will write and use an anonymous class to handle the clicks
on a regular Button. We call button.setOnclickListener just as we have done so
before. However, this time, instead of passing this as an argument, we create a brand-
new class of the View.OnClickListener type and override the onClick method as
the argument – just like we did with our other anonymous classes.

Tip
This method is preferable in this situation because there is only one button.
If we had lots of buttons, then having MainActivity implement View.
OnClickListener, and then overriding the onClick method to handle
all clicks in one method, would probably be preferable, as we have done
previously.

In the onClick method, we use the setText method to set the text property on
textView and the getText method of editText to get whatever text is currently in
the EditText widget.

Add the following code after the previous block of code in the onCreate method:

/*

 Let's listen for clicks on our "Capture" Button.

 We can do this with an anonymous class as well.

 An interface seems a bit much for one button.

*/

button.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 // We only handle one button

 // So, no switching required

 // Change the text on the TextView

 // to whatever is currently in the EditText

 textView.setText(editText.getText());

 }

});

Telegram Channel @IRFaraExam

348 Anonymous Classes – Bringing Android Widgets to Life

Coding the Switch widget
Next, we will create yet another anonymous class to listen for and handle changes to our
Switch widget.

When the isChecked variable is true, we show textView; when it is false, we hide
it.

Add the following code after the previous block of code in the onCreate method:

// Show or hide the TextView

switch1.setOnCheckedChangeListener(

 new CompoundButton.OnCheckedChangeListener() {

 public void onCheckedChanged(

 CompoundButton buttonView, boolean isChecked) {

 if(isChecked){

 textView.setVisibility(View.VISIBLE);

 }else{

 textView.setVisibility(View.INVISIBLE);

 }

 }

});

Now we can move on to the WebView widget.

Using WebView
Your manifest must include the INTERNET permission. This is how we add it.

Open the AndroidManifest.xml file, and add the following line of highlighted code,
which is shown with a bit of context:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/
android"

 package="com.gamecodeschool.widgetexploration">

 <uses-permission android:name="android

Telegram Channel @IRFaraExam

Running the Widget Exploration app 349

 .permission.INTERNET" />

 <application

 …

 …

Finally, we will add two more lines of code in order to grab a reference to the WebView
widget and load up a website. It should be a relatively straightforward process to modify
the code in order to load any website that you like. Add the following lines of code to the
end of the onCreate method:

WebView webView = (WebView) findViewById(R.id.webView);

webView.loadUrl("https://gamecodeschool.com");

Now we can run our app and try out all the features.

Running the Widget Exploration app
Run the app in the usual way, making sure that you use your tablet emulator.

Tip
The Android emulators can be rotated into landscape mode by pressing the Ctrl
+ F11 keyboard combination on a PC or Ctrl + fn+ F11 on a Mac.

Telegram Channel @IRFaraExam

350 Anonymous Classes – Bringing Android Widgets to Life

Here is the entire app, including the WebView widget, which is now visible:

Figure 13.12 – Final app layout

Try checking the radio buttons to see the time zone change on the clock. In the following
diagram, I have Photoshopped a few cropped screenshots together to show that the time
changes when a new time zone is selected:

Figure 13.13 – Time zones

Telegram Channel @IRFaraExam

Running the Widget Exploration app 351

To test out the CAPTURE button, the editable text, and the switch, follow these steps (we
have also listed them in the adjoining screenshot):

1. Enter different values into the EditText widget (which is on the left).

2. Click on the CAPTURE button.

3. Make sure that the Switch widget is on.

4. View the message:

Figure 13.14 – Testing the CAPTURE button

You can change what the preceding diagram looks like with different combinations of
checked and unchecked checkboxes, and you can hide and show the TextView widget
by using the switch above it. The following screenshot shows what happens to the
ImageView widget when you have the Tint and Re-size options selected:

Figure 13.15 – Testing the ImageView widget

Telegram Channel @IRFaraExam

352 Anonymous Classes – Bringing Android Widgets to Life

Oops! The size of the icon has been increased so much that it overlaps with the Re-size
checkbox.

Tip
Transparency doesn't show very clearly in a printed book, so I haven't shown a
visual example of the Transparency box being checked. Be sure to try this out
on an emulator or real device.

Summary
We have learned so much in this chapter, and we have explored a plethora of widgets. We
learned how to implement widgets in Java code without any XML, and we used our first
anonymous classes to handle clicks on a widget and put all our new widget prowess into a
working app.

Now, let's move on to look at another way in which we can significantly enhance our UIs.

In the next chapter, we will look at a totally new UI element that we can't simply drag and
drop from the palette, but we will still have plenty of help from the Android API. Next up
are dialog windows. Additionally, we will also make a start on our most significant app so
far, the Note to Self app, for memos, to-do lists, and personal notes.

Telegram Channel @IRFaraExam

14
Android Dialog

Windows
In this chapter, we will look at how to present the user with a pop-up dialog window. We
can then put all that we know into the first phase of our first app, Note to Self. We will
then explore the latest Android and Java features in this chapter and the next four (up to
Chapter 18, Localization), and use our newly acquired knowledge to enhance the Note to
Self app at each stage.

Each chapter will also build a selection of smaller apps that are separate from this
main app. So, what does this chapter hold in store for you? Well, we will cover the
following topics:

• Implementing a simple app with a pop-up dialog box

• Using the DialogFragment class to begin the Note to Self app

• Adding string resources in our projects instead of hardcoding text in our layouts

• Using Android naming conventions for the first time to make our code more
readable

• Implementing more complex dialog boxes to capture input from the user

Let's get started.

Telegram Channel @IRFaraExam

354 Android Dialog Windows

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2014.

Dialog windows
On many occasions, in our apps, we will want to show the user some information or even
ask for confirmation of an action in a pop-up window. This is known as a dialog window.
If you quickly scan the palette in Android Studio, then you might be surprised to see that
there is no mention whatsoever of dialogs.

Dialogs in Android are more advanced than a simple widget or even a whole layout. They
are classes that can have layouts and other User Interface (UI) elements of their own.

The best way to create a dialog window in Android is to use the FragmentDialog class.

Note
Fragments are a wide and vital topic in Android, and we will spend much of
the second half of this book exploring and using them.

Creating a neat pop-up dialog (using FragmentDialog) for our user to interact with is
a great introduction to fragments, and it's not overly complicated at all.

Creating the Dialog Demo project
We previously mentioned that the best way to create a dialog in Android is via the
FragmentDialog class.

To do this, create a new project in Android Studio using the Empty Activity template and
call it Dialog Demo. As you have come to expect, the completed code for this project is
in the Chapter 14/Dialog Demo folder of the download bundle.

Coding a DialogFragment class
Create a new class in Android Studio by right-clicking on the folder with the name of your
package (the same one that has the MainActivity.java file). Select New | Java class
and name it MyDialog. Press the Enter key to create the class.

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2014
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2014
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2014

Dialog windows 355

The first thing to do is to change the class declaration to extend DialogFragment.
When you have done so, your new class should look similar to the following code block:

public class MyDialog extends DialogFragment {

}

Now, let's add code to this class, a little bit at a time, and explain what is happening at each
step. Now, we need to import the DialogFragment class. You can do this by holding
down the Alt key and then tapping on Enter or by adding the following line of highlighted
code after the package declaration at the top of the MyDialog.java file:

package com.gamecodeschool.dialogdemo;

import androidx.fragment.app.DialogFragment;

public class MyDialog extends DialogFragment {

}

Just like so many classes in the Android API, DialogFragment provides us with
methods that we can override in order to interact with the different events that will occur
with the class.

Add the following highlighted code to override the onCreateDialog method. Study it
carefully, and we will examine what is happening next:

public class MyDialog extends DialogFragment {

 @Override

 public Dialog onCreateDialog(Bundle savedInstanceState) {

 // Use the Builder class because this dialog

 // has a simple UI

 AlertDialog.Builder builder =

 new AlertDialog.Builder(getActivity());

 }

}

Telegram Channel @IRFaraExam

356 Android Dialog Windows

You will need to import the Dialog, Bundle, and AlertDialog classes in the usual
way or by adding the following highlighted code manually:

import android.app.Dialog;

import android.os.Bundle;

import androidx.appcompat.app.AlertDialog;

import androidx.fragment.app.DialogFragment;

Note
There is still one error in the code because we are missing the return
statement for the onCreateDialog method. We will add this later on
when we have finished coding the rest of the method.

In the preceding code, we first added the overridden onCreateDialog method. This
will be called by Android when we later show the dialog to the user via code in the
MainActivity class.

Then, inside the onCreateDialog method, we get our hands on a new class. We declare
and initialize an object of the AlertDialog.Builder type, which needs a reference
to MainActivity passed into its constructor. This is why we use the getActivity()
method as the argument.

The getActivity method is part of the Fragment class (and, therefore,
DialogFragment too), and it returns a reference to Activity, which will create
DialogFragment. In this case, that is our MainActivity class.

Let's examine what we can do with builder now that we have declared and initialized it.

Using chaining to configure DialogFragment
Now we can use our builder object to do the remainder of the work. There is something
slightly odd in the following code snippet. If you quickly scan the next three blocks of
code, you will notice that there is a distinct lack of semicolons, ;. These three blocks of
code are, in fact, just one line to the compiler.

We have seen this before but in a less pronounced situation; that is, when we created a
Toast message and added a .show() method to the end of it. This is called chaining.
This is where we call more than one method, in sequence, on the same object. This is
equivalent to writing multiple lines of code; it is just more succinct this way.

Telegram Channel @IRFaraExam

Dialog windows 357

Add the following code (which uses chaining) inside the onCreateDialog method
right after the previous code we added. Examine the new code, and we will discuss it next:

// Dialog will have "Make a selection" as the title

builder.setMessage("Make a selection")

// An OK button that does nothing

.setPositiveButton("OK", new DialogInterface.OnClickListener()
{

 public void onClick(DialogInterface dialog, int id) {

 // Nothing happening here

 }

})

// A "Cancel" button that does nothing

.setNegativeButton("Cancel", new DialogInterface.
OnClickListener() {

 public void onClick(DialogInterface dialog, int id) {

 // Nothing happening here either

 }

});

At this point, you will need to import the DialogInterface class. Use the Alt | Enter
technique, or add this line of code among the other import statements:

import android.content.DialogInterface;

Here is an explanation for each of the three parts of the code that we just added:

1. In the first of the three blocks (which uses chaining), we call builder.
setMessage. This sets the main message that the user will see in the dialog box.
Additionally, note that it is fine to have comments between parts of the chained
method calls since these are ignored by the compiler.

Telegram Channel @IRFaraExam

358 Android Dialog Windows

2. Then, we add a button to our dialog with the .setPositiveButton
method, and the first argument of this method sets the text of the button to
OK. The second argument is an anonymous class, called DialogInterface.
OnClickListener, which handles any clicks on the button. Notice that we are
not going to add any code to the onClick method. Here, we just want to see this
simple dialog; we will take things a step further in the next project.

3. Next, we call yet another method on the same builder object. This time, it's the
setNegativeButton method. Again, the two arguments set Cancel as the text
for the button and an anonymous class to listen for clicks. Again, for the purpose
of this demonstration, we are not taking any action in the overridden onClick
method. After the call to the setNegativeButton method, we finally see a
semicolon marking the end of the line of code.

We will finally code the return statement to complete the method and remove the error
that we have had from the start. Add the return statement, as shown in the following
snippet, to the end (but inside the final curly brace) of the onCreateDialog method:

…

// Create the object and return it

return builder.create();

}// End of onCreateDialog

This last line of code has the effect of returning to the MainActivity class (which
calls the onCreateDialog method in the first place) our new, fully configured, dialog
window. We will examine and add this calling code later on.

Now, we have our MyDialog class that extends FragmentDialog. All we need
to do is to declare an instance of MyDialog, instantiate it, and call its overridden
createDialog method.

Using the DialogFragment class
Before we turn to the code, let's add a button to our layout. Perform the following steps:

1. Switch to the activity_main.xml tab and then switch to the Design tab.

2. Drag a Button onto the layout and make sure its id attribute is set to button.

3. Click on the Infer Constraints button to constrain the button exactly where you
want to place it. Note that the position isn't important – how we will use it to create
an instance of our MyDialog class is the key lesson for now.

Telegram Channel @IRFaraExam

Dialog windows 359

Now switch to the MainActivity.java tab, and we will handle a click on this
new button by using an anonymous class just as we did in Chapter 13, Anonymous
Classes – Bringing Android Widgets to Life, during the Widget Exploration app. We do
it this way because we only have one button in the layout, and it seems sensible and
more compact than implementing the more complicated OnClickListener interface
alternative (as we did for the Java Meet UI demo app in Chapter 12, The Stack, the Heap,
and the Garbage Collector).

Notice, in the following code block, that the anonymous class is exactly the same type that
we previously implemented an interface for. Add this code to the onCreate method:

/*

 Let's listen for clicks on our regular Button.

 We can do this with an anonymous class.

*/

Button button = (Button) findViewById(R.id.button);

button.setOnClickListener(

 new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 // We only handle one button

 // Therefor no switching required

 MyDialog myDialog = new MyDialog();

 myDialog.show(getSupportFragmentManager(),

 "123");

 // This calls onCreateDialog

 // Don't worry about the strange looking

 123

 // We will find out about this in chapter

 18

 }

 }

);

Telegram Channel @IRFaraExam

360 Android Dialog Windows

Note
The following import statements are needed for this code:

import android.view.View;

import android.widget.Button;

Notice that the only thing that happens in the code is that the onClick method creates
a new instance of MyDialog and calls its show method. This, unsurprisingly, will show
our dialog window just as we configured it in the MyDialog class.

The show method needs a reference to FragmentManager, which we can get with
getSupportFragmentManager. This is the class that tracks and controls all
Fragment instances for an activity. We also pass in an identifier: "123".

More details on the FragmentManager will be revealed when we look more closely
at fragments. We will do so in the Android Fragments section in Chapter 20, Drawing
Graphics.

Note
The reason we use the getSupportFragmentManager method is that
we are supporting older devices by extending AppCompatActivity.
If we simply extended Activity, then we could use the
getFragmentManager class. The downside is that the app wouldn't run
on as many devices.

Now we can run the app and admire our new dialog window, which appears when we
click on the button in the layout. Notice that clicking on either of the buttons in the dialog
window will close it. This is the default behavior. The following screenshot shows our
dialog in action on the Pixel C tablet emulator:

Figure 14.01 – Dialog in action

Telegram Channel @IRFaraExam

The Note to Self app 361

Next, we will make two more classes that implement dialogs, as part of the first phase of
our multi-chapter Note to Self app. We will learn that a dialog window can have almost
any layout we choose and that we don't have to rely on simple layouts like those that the
Dialog.Builder class gave us.

The Note to Self app
Welcome to the first of three major apps that we will implement in this book. When we
carry out these projects, we will execute them more professionally than the smaller apps.
We will use Android naming conventions, string resources, and proper encapsulation.

Sometimes, these things can be overkill when you are trying to learn a new Android/Java
topic. However, they are useful, and it is important to start using them as soon as possible
in real projects. Eventually, they become second nature, and the quality of our apps will
benefit.

Using naming conventions and string resources
In Chapter 3, Exploring Android Studio and the Project Structure, we talked about using
string resources instead of hardcoding text in our layout files. There are a few benefits to
doing things this way, but it is also relatively long-winded.

As this is our first real-world project, it would be a good time to do things the right way so
that we can get the experience of doing so. If you want a quick refresher on the benefits of
string resources, check back to Chapter 3, Exploring Android Studio and the Project Structure.

Naming conventions are the conventions or rules used for naming the variables, methods,
and classes in our code. Throughout this book, we have loosely applied Android's naming
conventions. As this is our first real-world app, we will be slightly stricter in applying these
naming conventions.

Most notably, when a variable is a member of a class, we will prefix the name with a
lowercase m.

Note
You can find more information about Android's naming conventions and
code styles at https://source.android.com/source/code-
style.html.

Telegram Channel @IRFaraExam

362 Android Dialog Windows

How to get the code files for the Note to Self app
The fully completed app, including all the code and resources, can be found in the Chapter
18/Note to self folder within the download bundle. As we are implementing this app
over the next five chapters, it will probably be useful to view the part-completed, runnable
app at the end of every chapter as well. The part-completed runnable apps and all their
associated code and resources can be found in their respective folders:

Chapter 14/Note to self

Chapter 16/Note to self

Chapter 17/Note to self

Chapter 18/Note to self

Note
There is no Note to Self code in Chapter 15, Arrays Maps, and Random
Numbers. This is because, even though we will learn about topics we use
in Note to Self, we won't make any changes until Chapter 16, Adapters and
Recyclers.

If you are following along and intend to build the Note to Self app from start to finish,
we will build a project simply called Note to self. However, there is still nothing
stopping you from dipping into the code files of the projects from each chapter to do a bit
of copying and pasting at any time. Just be aware that at various points in the instructions,
you will be asked to remove or replace the occasional line of code from a previous chapter.

So, even if you are copying and pasting more than you are typing in code, be sure to read
the instructions in full, and refer to the code in the book for extra comments that might
be useful.

In each chapter, the code will be presented as if you have completed the last chapter in full,
showing code from earlier chapters, where necessary, as useful context for our new code.

Each chapter will not be solely devoted to the Note to Self app – we will learn about other,
usually related, things and build some smaller/simpler apps as well. So, when we come to
the Note to Self implementation, we will, in theory, be prepared for it.

Telegram Channel @IRFaraExam

The Note to Self app 363

The completed app
The following screenshots are from the completed app. It will, of course, look slightly different
at the various stages of development. Where necessary, we will refer to more screenshots
either as a reminder or to see the differences throughout the development process.

The completed app will allow the user to tap on the floating action button in the lower-
right corner of the app to open a dialog window to add a new note. The following
screenshot shows this feature highlighted:

Figure 14.02 – Floating action button

On the left, you can view the button to tap on, and on the right, you can view the dialog
window where the user can add a new note.

Telegram Channel @IRFaraExam

364 Android Dialog Windows

Eventually, as the user adds more notes, they will have a list of all the notes they have
added on the main screen of the app, as shown in the following screenshot. The user can
select whether the note is Important, an Idea, and/or a Todo:

Figure 14.03 – Notes on the main screen

Telegram Channel @IRFaraExam

The Note to Self app 365

You will be able to scroll down the list and tap on a note to see it shown in another dialog
window that is dedicated to that note. The following screenshot shows a dialog window
displaying a note:

Figure 14.04 – Display of the selected note

Telegram Channel @IRFaraExam

366 Android Dialog Windows

There will also be a simple (that is, very simple) Settings screen, which will be accessible
from the menu. It will allow the user to configure whether the note list is formatted with a
dividing line. Here is the Settings menu option in action:

Figure 14.05 –Settings menu option

Now that we know exactly what we are going to build, we can go ahead and start to
implement it.

Building the project
Let's create our new project now. Use the Basic Activity template. As we discussed in
Chapter 3, Exploring Android Studio and the Project Structure, this template will generate
a simple menu and a floating action button, which are both used in this project. Call the
project Note to Self.

Preparing the string resources
Here, we will create all the string resources that we will refer to from our layout files instead
of hardcoding the text property of the UI widgets, which we have been doing up until now.

To get started, open the strings.xml file from the res/values folder in the project
explorer. You will see the autogenerated resources. Add the following highlighted string
resources that we will use in our app throughout the rest of the project. Add the code
before the closing </resources> tag:

...

<resources>

 <string name="app_name">Note to Self</string>

 <string name="action_settings">Settings</string>

 <!-- Strings used for fragments for navigation -->

 <string name="first_fragment_label">First

Telegram Channel @IRFaraExam

The Note to Self app 367

 Fragment</string>

 <string name="second_fragment_label">Second

 Fragment</string>

 <string name="next">Next</string>

 <string name="previous">Previous</string>

 <string name="hello_first_fragment">Hello first

 fragment</string>

 <string name="hello_second_fragment">Hello second

 fragment. Arg: %1$s</string>

 <string name="action_add">add</string>

 <string name="title_hint">Title</string>

 <string name="description_hint">Description</string>

 <string name="idea_text">Idea</string>

 <string name="important_text">Important</string>

 <string name="todo_text">To do</string>

 <string name="cancel_button">Cancel</string>

 <string name="ok_button">OK</string>

 <string name="settings_title">Settings</string>

 <string name="theme_title">Theme</string>

 <string name="theme_light">Light</string>

 <string name="theme_dark">Dark</string>

</resources>

In the preceding code, notice that each string resource has a name attribute that is unique
and distinguishes it from all the others while also providing a meaningful and, hopefully,
memorable clue as to the actual string value it represents. It is these name values that we
will use to refer to from within our layout files.

We will not need to revisit this file for the rest of the app.

Telegram Channel @IRFaraExam

368 Android Dialog Windows

Coding the Note class
This is the fundamental data structure of the app. It is a class that we will write ourselves
from scratch and has all the member variables we need to represent one of the user's
notes. In Chapter 15, Arrays Maps, and Random Numbers, we will learn some new Java
in order to understand how we can let the user have dozens, hundreds, or even thousands
of notes.

Create a new class by right-clicking on the folder with the same name as your package. As
expected, it is the one that also contains the MainActivity.java file. Select New | Java
class and name it Note. Press the Enter key to create the class.

Add the following highlighted code to the new Note class:

public class Note {

 private String mTitle;

 private String mDescription;

 private boolean mIdea;

 private boolean mTodo;

 private boolean mImportant;

}

Notice that our member variable names are prefixed with m as per the Android
convention. Additionally, we don't want any other class to access these variables directly,
so they are all declared private.

Therefore, we will need a getter and a setter method for each of our members. Add the
following getter and setter methods to the Note class:

public String getTitle() {

 return mTitle;

}

public void setTitle(String mTitle) {

 this.mTitle = mTitle;

}

Telegram Channel @IRFaraExam

The Note to Self app 369

public String getDescription() {

 return mDescription;

}

public void setDescription(String mDescription) {

 this.mDescription = mDescription;

}

public boolean isIdea() {

 return mIdea;

}

public void setIdea(boolean mIdea) {

 this.mIdea = mIdea;

}

public boolean isTodo() {

 return mTodo;

}

public void setTodo(boolean mTodo) {

 this.mTodo = mTodo;

}

public boolean isImportant() {

 return mImportant;

}

public void setImportant(boolean mImportant) {

 this.mImportant = mImportant;

}

Telegram Channel @IRFaraExam

370 Android Dialog Windows

There is quite a lot of code in this preceding list, but there is nothing complicated. Each of
the methods has public access specified, so it can be used by any other class that has a
reference to an object of the Note type. Furthermore, for each variable, there is a method
with the name of get... and a method with the name of set ... The getters for the
Boolean type variables are named is
 This is a logical name if you think about it because the returned answer will be either
true or false.

Each of the getters simply returns the value of the related variable. And each of the setters
sets the value of the related variable to whatever value is passed into the method.

Note
In fact, we should really enhance our setters a little to do a bit of checking to
make sure that the values passed in are within reasonable limits. For example,
we might want to check on and enforce a maximum or minimum length for
String mTtile and String mDescription. This is left as an
exercise for the reader to come back to.

Let's design the layout of the two dialog windows.

Implementing the dialog designs
Now, we will do something that we have done many times before, but this time, for a new
reason. As we know, we will have two dialog windows: one for the user to enter a new note
and one for the user to view a note of their choice.

We can design the layouts of these two dialog windows in the same way that we
designed all our previous layouts. When we come to create the Java code for the
FragmentDialog classes, we will then learn how to incorporate these layouts.

First, let's add a layout for our "new note" dialog. Perform the following steps:

1. Right-click on the layout folder in the project explorer, and select New | Layout
resource file. Enter dialog_new_note for the File name: field.

2. Left-click on OK to generate the new layout file that will have the
ConstraintLayout type, by default, as its root element.

Telegram Channel @IRFaraExam

The Note to Self app 371

3. Refer to the target design, in the following diagram, as you follow the rest of these
instructions. I have Photoshopped the finished layout, including the constraints
that we will soon autogenerate, next to the layout with the constraints hidden for
extra clarity:

Figure 14.06 – Finished layout for new note

4. Drag and drop a Plain Text widget (from the Text category) to the upper-left corner
of the layout. Then, add another Plain Text widget below it. Don't worry about any
of the attributes for now.

5. Drag and drop three CheckBox widgets from the Button category, one below the
other. Look at the earlier reference diagram for guidance. Again, don't worry about
any attributes for now.

Telegram Channel @IRFaraExam

372 Android Dialog Windows

6. Drag and drop two Buttons onto the layout. The first will go directly below the last
CheckBox widget from the previous step; the second will fall horizontally, in line
with the first Button, but to the right of the layout.

7. Tidy up the layout so that it looks as close to the reference diagram as possible.
Then, click on the Infer Constraints button to fix the positions you have chosen.

8. Now, we can set up all of our text, id, and hint properties. You can do this by
using the values from the following table. Remember that we are using our string
resources for the text and hint properties:

Note
When you edit the first id property (which we will do next), you might be
shown a pop-up window asking for a confirmation of your changes. Check the
Don't ask again during this session box and click on Yes to continue:

Figure 14.07 – Confirmation of changes

Telegram Channel @IRFaraExam

The Note to Self app 373

We now have an organized layout that is ready for our Java code to display. Make sure
that you keep the id property values of the different widgets in mind. We will see them in
action when we write our Java code. The important thing is that our layout looks nice and
has an id property value for every relevant item, so we can get a reference to it.

Let's create the layout for the "show note" dialog:

1. Right-click on the layout folder in the project explorer and select New | Layout
resource file. Enter dialog_show_note for the File name: field.

2. Left-click on OK to generate the new layout file that will have the
ConstraintLayout type as its root element by default.

3. Refer to the target design, in the following diagram, as you follow the rest of these
instructions. I have Photoshopped the finished layout, including the constraints we
will soon autogenerate, next to the layout with the constraints hidden for extra clarity:

Figure 14.08 – Finished layout for the show note dialog

Telegram Channel @IRFaraExam

374 Android Dialog Windows

4. First of all, drag and drop three TextView widgets so that they are vertically aligned
across the top of the layout.

5. Next, drag and drop another TextView widget just below the center of the three
previous TextView widgets.

6. Add another TextView widget just below the previous widget but over to the left.

7. Now add a Button horizontally in the center, but near the bottom of the layout.

8. Tidy up the layout so that it looks as close to the reference diagram as possible,
Then, click on the Infer Constraints button to fix the positions you have chosen.

9. Configure the attributes from the following table:

Note
You might want to tweak the final positions of some of the UI elements by
dragging them about slightly since we adjusted their size and contents. First,
click on Clear all Constraints. Then, adjust the layout to how you want it, and,
finally, click on Infer Constraints to fix the positions again. While applying
btnOK to the button ID there might be a dialog box saying this ID already
exist, click on Continue to ignore the pop up.

Now we have a layout that we can use to show a note to the user. Notice that we get to
reuse some string resources. The bigger our apps get, the more beneficial it is to do things
in this way.

Telegram Channel @IRFaraExam

The Note to Self app 375

Coding the dialog boxes
Now we have a design for both of our dialog windows ("show note" and "new note"),
we can use what we know about the FragmentDialog class to implement a class to
represent each of the dialog windows that the user can interact with.

We will start with the "new note" screen.

Coding the DialogNewNote class
Create a new class by right-clicking on the project folder that has all the .java files and
choose New | Java class. Name the class DialogNewNote.

First, change the class declaration and extend DialogFragment. Then, override the
onCreateDialog method, which is where all the rest of the code in this class will go. To
achieve this, make your code is the same as the following snippet:

public class DialogNewNote extends DialogFragment {

 @Override

 public Dialog onCreateDialog(Bundle savedInstanceState) {

 // All the rest of the code goes here

 }

}

Note
You will also need to add these new imports:

import androidx.fragment.app.DialogFragment;

import android.app.Dialog;

import android.os.Bundle;

We temporarily have an error in the new class because we need a return statement;
however, we will get to that in just a moment.

In the next block of code, first, we declare and initialize an AlertDialog.Builder
object, in the same way we did earlier when creating dialog windows. However, this time,
we will rely on this object far less than we previously did.

Telegram Channel @IRFaraExam

376 Android Dialog Windows

Next, we initialize a LayoutInflater object, which we will use to inflate our XML layout.
By "inflate," we are simply referring to how we turn our XML layout into a Java object. Once
this has been done, we can then access all our widgets in the usual way. We can think of the
inflater.inflate method as replacing the setContentView method for our dialog.
Then, in the second line, we do just that using the inflate method.

Add the three lines of code that we just discussed:

AlertDialog.Builder builder =

 new AlertDialog.Builder(getActivity());

LayoutInflater inflater =

 getActivity().getLayoutInflater();

View dialogView =

 inflater.inflate(R.layout.dialog_new_note, null);

Note
To use the new classes in the preceding three lines of code, you will need to add
the following import statements:

import androidx.appcompat.app.AlertDialog;

import android.view.View;

import android.view.LayoutInflater;

We now have a View object, called dialogView, that has all of the UI elements from
our dialog_new_note.xml layout file.

Immediately after the previous block of code, we will add the following block of code,
which we explain next.

This code will get a reference to each of the UI widgets in the usual way. Many of the
objects in the following code are declared as final because they will be used in an
anonymous class, and as we learned previously, this is necessary. Remember that it is the
reference that is final (that is, it cannot change); we can still change the objects on the
heap to which they are a reference.

Add the following code just after the previous block of code:

final EditText editTitle =

dialogView.findViewById(R.id.editTitle);

Telegram Channel @IRFaraExam

The Note to Self app 377

final EditText editDescription =

dialogView.findViewById(R.id.editDescription);

final CheckBox checkBoxIdea =

dialogView.findViewById(R.id.checkBoxIdea);

final CheckBox checkBoxTodo =

dialogView.findViewById(R.id.checkBoxTodo);

final CheckBox checkBoxImportant =

dialogView.findViewById(R.id.checkBoxImportant);

Button btnCancel =

dialogView.findViewById(R.id.btnCancel);

Button btnOK =

dialogView.findViewById(R.id.btnOK);

Note
Add the following import code statements to make the code that you just
added error-free:

import android.widget.Button;

import android.widget.CheckBox;

import android.widget.EditText;

In the next code block, we will set the message of the dialog using builder, which
is our builder instance. Then, we will write an anonymous class to handle clicks on
the btnCancel button. In the overridden onClick method, we will simply call
dismiss(), which is a public method of DialogFragment, to close the dialog
window. This is just what we need if the user clicks on Cancel.

Add the following code that we have just discussed:

builder.setView(dialogView).setMessage("Add a new note");

// Handle the cancel button

btnCancel.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 dismiss();

 }

});

Telegram Channel @IRFaraExam

378 Android Dialog Windows

Now, we will add an anonymous class to handle what happens when the user clicks on the
OK button (btnOK).

First, we create a new Note instance, called newNote. Then, we set each of the member
variables from newNote to the appropriate contents of the form.

After this, we do something new. We create a reference to the MainActivity class using
the getActivity method. Then, we use that reference to call the createNewNote
method in MainActivity.

Note
Note that we have not written this createNewNote method yet, and it will
show up as an error until we do so later in this chapter.

The argument sent in this method is our newly initialized newNote object. This has the
effect of sending the user's new note back to MainActivity. We will learn what to do
with this later on in the chapter.

Finally, we call dismiss to close the dialog window.

Add the following code that we have been discussing after the preceding code:

btnOK.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 // Create a new note

 Note newNote = new Note();

 // Set its variables to match the

 // user's entries on the form

 newNote.setTitle(editTitle.

 getText().toString());

 newNote.setDescription(editDescription.

 getText().toString());

 newNote.setIdea(checkBoxIdea.isChecked());

 newNote.setTodo(checkBoxTodo.isChecked());

Telegram Channel @IRFaraExam

The Note to Self app 379

 newNote.setImportant(checkBoxImportant.

 isChecked());

 // Get a reference to MainActivity

 MainActivity callingActivity =

 (MainActivity) getActivity();

 // Pass newNote back to MainActivity

 callingActivity.createNewNote(newNote);

 // Quit the dialog

 dismiss();

 }

});

return builder.create();

That's our first dialog done. We haven't wired it up to appear in MainActivity yet, and
we still need to implement the createNewNote method too. We will do this straight
after we create the next dialog.

Coding the DialogShowNote class
Create a new class by right-clicking on the project folder that contains all of the .java
files and choose New | Java class. Name the class DialogShowNote.

First, change the class declaration and extend DialogFragment. Then, override
the onCreateDialog method. As most of the code for this class goes in the
onCreateDialog method, implement the signature and empty body, as shown in the
following code snippet, and we will revisit it later.

Notice that we declare a member variable, mNote, of the Note type. Add the
sendNoteSelected method and the one line of code that initializes mNote. This
method will be called by MainActivity, and it will pass to the Note object the user
has clicked on.

Telegram Channel @IRFaraExam

380 Android Dialog Windows

Add the code we just discussed. Then, we can view and code the details of
onCreateDialog:

public class DialogShowNote extends DialogFragment {

 private Note mNote;

 @Override

 public Dialog onCreateDialog(Bundle savedInstanceState) {

 // All the other code goes here

 }

 // Receive a note from the MainActivity

 public void sendNoteSelected(Note noteSelected) {

 mNote = noteSelected;

 }

}

Note
At this point, you will need to import the following classes:

import android.app.Dialog;

import android.os.Bundle;

import androidx.fragment.app.DialogFragment;

Next, we declare and initialize an instance of AlertDialog.Builder. Additionally,
as we did for the DialogNewNote class, we declare and initialize a LayoutInflater
instance and then use it to create a View object that has the layout for the dialog. In this
case, it is the layout from dialog_show_note.xml.

Telegram Channel @IRFaraExam

The Note to Self app 381

Finally, in the following code, we get a reference to each of the UI widgets and set the
text attributes to txtTitle and textDescription from the appropriate member
variables of mNote, which was initialized in the sendNoteSelected method.

Add the code that we just discussed to the onCreateDialog method:

// All the other code goes here

AlertDialog.Builder builder =

 new AlertDialog.Builder(getActivity());

LayoutInflater inflater =

 getActivity().getLayoutInflater();

View dialogView =

 inflater.inflate(R.layout.dialog_show_note, null);

TextView txtTitle =

 dialogView.findViewById(R.id.txtTitle);

TextView txtDescription =

 dialogView.findViewById(R.id.txtDescription);

txtTitle.setText(mNote.getTitle());

txtDescription.setText(mNote.getDescription());

TextView txtImportant =

 dialogView.findViewById(R.id.textViewImportant);

TextView txtTodo =

 dialogView.findViewById(R.id.textViewTodo);

TextView txtIdea =

 dialogView.findViewById(R.id.textViewIdea);

Telegram Channel @IRFaraExam

382 Android Dialog Windows

Note
Add the following import statements so that all of the classes in the
preceding code are available:

import android.view.LayoutInflater;

import android.view.View;

import android.widget.TextView;

import androidx.appcompat.app.AlertDialog;

The following code that we will add is also in the onCreateDialog method. It checks
whether the note being shown is "important" and then shows or hides the txtImportant
TextView accordingly. We then do the same for txtTodo and txtIdea.

Add this code after the previous block of code while you are still in the
onCreateDialog method:

if (!mNote.isImportant()){

 txtImportant.setVisibility(View.GONE);

}

if (!mNote.isTodo()){

 txtTodo.setVisibility(View.GONE);

}

if (!mNote.isIdea()){

 txtIdea.setVisibility(View.GONE);

}

All we need to do now is dismiss (close) the dialog window when the user clicks on
the OK button. This is done via an anonymous class, as we have discussed on several
occasions by now. The onClick method simply calls the dismiss method, which closes
the dialog window.

Add this code to the onCreateDialog method after the previous block of code:

Button btnOK = (Button) dialogView.findViewById(R.id.btnOK);

builder.setView(dialogView).setMessage("Your Note");

Telegram Channel @IRFaraExam

The Note to Self app 383

btnOK.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 dismiss();

 }

});

return builder.create();

Note
Import the Button class using this line of code:

import android.widget.Button;

We now have two dialog windows ready to roll. We just need to add some code to the
MainActivity class to finish the job. First, let's do a bit of project housekeeping.

Removing the unwanted autogenerated fragments
We will now tidy up the files and structure of our project. Remember that the Basic
Activity template we used to generate this project has quite a few features. Some of these
we need, while some we don't. We want the floating action button to be in the lower-
right corner of the layout, and we want the main menu with the Settings option in the
upper-right corner. We don't, however, want multiple fragments for the user to navigate
between. To effectively remove all the fragments and have just one simple main layout in
the content_main.xml file, we will delete the reference to the fragment along with all
of its navigation options.

Open the content_main.xml layout file. In the Component tree window in the
Design tab of the content_main.xml file, find the nav_host_fragment element. Select
it and then press the Delete key on the keyboard. Now, we have a cleaner UI that is ready
for future development.

Showing our new dialogs
Open the MainActivity.java file. Add a new temporary member variable just after
the MainActivity class declaration. This won't be in the final app; it is so we can test
our dialog windows as soon as possible:

// Temporary code

Note mTempNote = new Note();

Telegram Channel @IRFaraExam

384 Android Dialog Windows

Now, add this method to the MainActivity class so that we can receive a new note
from the DialogNewNote class:

public void createNewNote(Note n){

 // Temporary code

 mTempNote = n;

}

To send a note to the DialogShowNote method, we need to add a button with an ID
of button to the content_main.xml layout file. Open the content_main.xml
layout file.

Just so that it is clear what this button is for, we will change its text attribute to Show
Note, as follows:

• Drag a button onto the content_main.xml layout and configure the id property
as button and the text property as Show Note.

• Click on the Infer Constraints button so that the button stays where you put it. The
exact position of this button is not important at this stage.

Note
Just to clarify, this is a temporary button for testing purposes and will not be in
the final app. At the end of development, we will be able to click on a note's title
from a scrolling list.

In the onCreate method, we will set up an anonymous class to handle clicks on our
temporary button. The code in the onClick method will do the following:

• Create a new DialogShowNote instance that is simply called dialog.

• Call the sendNoteSelected method on dialog to pass in mTempNote as a
parameter, which is our Note object.

• Finally, it will call show, which breathes life into our new dialog and reveals it to
the user.

Telegram Channel @IRFaraExam

The Note to Self app 385

Add the code that we just described to onCreate:

// Temporary code

Button button = findViewById(R.id.button);

button.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 // Create a new DialogShowNote called dialog

 DialogShowNote dialog = new DialogShowNote();

 // Send the note via the sendNoteSelected method

 dialog.sendNoteSelected(mTempNote);

 // Create the dialog

 dialog.show(getSupportFragmentManager(), "123");

 }

});

Note
Add the Button class using this line of code:

import android.widget.Button;

Telegram Channel @IRFaraExam

386 Android Dialog Windows

We can now summon our DialogShowNote dialog window at the click of a button. Run
the app and click on the SHOW NOTE button to view the DialogShowNote dialog
with the dialog_show_note.xml layout:

Figure 14.09 – DialogShowNote dialog

Admittedly, this is not much to look at considering how much coding we have done in this
chapter. However, when we get the DialogNewNote class working, we will be able to see
how the MainActivity class interacts and shares data between the two dialogs.

Next, let's make the DialogNewNote dialog useable.

Coding the floating action button
This is going to be easy. The floating action button is provided for us in the layout. As a
reminder, the floating action button is the round icon with an envelope image on it, as
pictured in the lower-right corner of the preceding screenshot.

Telegram Channel @IRFaraExam

The Note to Self app 387

It is in the activity_main.xml file. This is the XML code that positions and defines its
appearance. Notice that just before the code for the floating action button, there is a line
of code (highlighted) that includes the content_main.xml file. This currently contains
our Show Note button and will eventually contain our sophisticated scrolling list:

…

…

<include layout="@layout/content_main" />

<com.google.android.material

 .floatingactionbutton.FloatingActionButton

 android:id="@+id/fab"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="bottom|end"

 android:layout_margin="@dimen/fab_margin"

 app:srcCompat="@android:drawable/ic_dialog_email" />

…

…

Android Studio has even provided an anonymous class to handle any clicks on the floating
action button. All we need to do is add some code to the onClick method of this already
provided class, and we can use the DialogNewNote class.

The floating action button is usually used for a core action within an app. For example,
in an email app, it would probably be used to start a new email. Alternatively, in a note-
keeping app, it would probably be used to add a new note. So, let's do that now.

In the MainActivity.java file, find the autogenerated code provided by Android
Studio in the MainActivity class of the onCreate method. Here it is in its entirety:

fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Snackbar.make(view, "Replace with your own

 action",

 Snackbar.LENGTH_LONG)

 .setAction("Action",

Telegram Channel @IRFaraExam

388 Android Dialog Windows

 null).show();

 }

});

In the preceding code snippet, note the highlighted line and delete it. Now, add the
following code in place of the deleted code:

DialogNewNote dialog = new DialogNewNote();

dialog.show(getSupportFragmentManager(), "");

The new code creates a new dialog window of the DialogNewNote variety and then
shows it to the user.

We can now run the app. Tap on the floating action button, and add a note that is similar
to the following screenshot:

Figure 14.10 – Add new note

Telegram Channel @IRFaraExam

Summary 389

Next, we can tap on the Show Note button in order to view it in a dialog window, as follows:

Figure 14.11 – Show note dialog window

Note that if you add a second note, it will overwrite the first because we only have one
Note object. We will need to learn some more Java in order to solve this problem.

Summary
In this chapter, we discussed and implemented a common UI design with dialog windows
using the DialogFragment class.

Then, we went a step further and started the Note to Self app by implementing more
complicated dialogs that can capture information from the user. We saw that the
DialogFragment class enables us to have any UI we design inside a dialog box.

In the next chapter, we will deal with the obvious problem that the user can only have
one note. We will solve this problem by exploring Java arrays and their close cousin,
ArrayList, along with another data-related Java class, Map.

Telegram Channel @IRFaraExam

Telegram Channel @IRFaraExam

15
Arrays, Maps, and
Random Numbers

In this chapter, we will learn about Java arrays, which allow us to manipulate a potentially
huge amount of data in an organized and efficient manner. We will also use a close Java
relation to arrays, ArrayList, and look at the differences between them.

Once we are comfortable handling substantial amounts of data, we will see what the
Android API has to offer to help us easily connect our newfound data-handling skills
to the user interface without breaking a sweat.

The topics in this chapter include the following:

• The Random class

• Handling data with arrays

• Arrays mini-app

• Dynamic arrays including a mini-app

• Multidimensional arrays including a mini-app

• The ArrayList class

• The enhanced for loop

• The Java HashMap

Telegram Channel @IRFaraExam

392 Arrays, Maps, and Random Numbers

First, let's learn about the Random class.

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2015.

A random diversion
Sometimes in our apps we will want a random number, and Java provides us with the
Random class for these occasions. There are many possible uses for this class. For instance,
maybe our app wants to show a random tip of the day, or is a game that has to choose
between scenarios, or is a quiz that asks random questions.

The Random class is part of the Java API and is fully compatible with our Android apps.

Let's have a look at how we can create random numbers, and later in the chapter we will
put it to practical use. All the hard work is done for us by the Random class. First, we need
to create an object of type Random:

Random randGenerator = new Random();

Then we use our new object's nextInt method to generate a random number in
a certain range. This next line of code generates the random number using our Random
object and stores the result in the ourRandomNumber variable:

int ourRandomNumber = randGenerator.nextInt(10);

The number that we enter for the range starts from zero. So, the preceding line will
generate a random number between 0 and 9. If we want a random number between 1
and 10, we just do this:

ourRandomNumber ++;

We can also use the Random object to get other types of random numbers using the
nextLong, nextFloat, and nextDouble methods.

We will put the Random class to practical use later in the chapter with a quick geography
quiz app.

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2015
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2015
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2015

Handling large amounts of data with arrays 393

Handling large amounts of data with arrays
You might be wondering what happens when we have an app with lots of variables to keep
track of. What about our Note to Self app with 100 notes or a high score table in a game
with the top 100 scores? We could declare and initialize 100 separate variables like this:

Note note1;

Note note2;

Note note3;

// 96 more lines like the above

Note note100;

Or we could do this:

int topScore1;

int topScore2;

int topScore3;

// 96 more lines like the above

int topScore100;

Straight away, this might seem unwieldy, but what about when someone gets a new top
score or we want to let our users sort the order that their notes are displayed in? Using
the high scores scenario, we must shift the scores in every variable down one place. A
nightmare begins:

topScore100 = topScore99;

topScore99 = topScore98;

topScore98 = topScore97;

// 96 more lines like the above

topScore1 = score;

There must be a better way. When we have a whole array of variables, what we need is
a Java array. An array is a reference variable that holds up to a pre-determined, fixed
maximum number of elements. Each element is a variable with a consistent type.

The following code declares an array that can hold int type variables, perhaps a high
score table or a series of exam grades:

int [] intArray;

Telegram Channel @IRFaraExam

394 Arrays, Maps, and Random Numbers

We could also declare arrays of other types, including classes such as Note, like this:

String [] classNames;

boolean [] bankOfSwitches;

float [] closingBalancesInMarch;

Note [] notes;

Each of these arrays would need to have a fixed maximum amount of storage space
allocated before it was used. Just like other objects, we must initialize arrays before we use
them:

intArray = new int [100];

The preceding code allocates up to a maximum of 100 int-sized storage spaces. Think
of a long aisle of 100 consecutive storage spaces in our memory warehouse analogy. The
spaces would probably be labeled intArray[0], intArray[1], intArray[2], and
so on, with each space holding a single int value. Perhaps the slightly surprising thing
here is that the storage spaces start off at zero, not 1. Therefore, in a 100-wide array, the
storage spaces would run from 0 to 99.

We could initialize the values in some of these storage spaces like this:

intArray[0] = 5;

intArray[1] = 6;

intArray[2] = 7;

But note that we can only ever put the pre-declared type into an array, and the type that
an array holds can never change:

intArray[3]= "John Carmack"; // Won't compile String not int

So, when we have an array of int types, what are each of these int variables called?
What are the names of these variables and how do we access the values stored in them?
The array notation syntax replaces the variable names. And we can do anything with
a variable in an array that we could do with a regular variable with a name:

intArray [3] = 123;

The preceding code assigns the value 123 into the fourth position of intArray. Here is
another example:

intArray[10] = intArray[9] - intArray[4];

Telegram Channel @IRFaraExam

Handling large amounts of data with arrays 395

The preceding code subtracts the value in the fifth position of intArray from the value
in the tenth position and stores the answer in the eleventh position. We can also assign the
value from an array to a regular variable of the same type, like this:

int myNamedInt = intArray [3];

Note, however, that myNamedInt is a separate and distinct primitive variable and any
changes to it do not affect the value stored in the intArray reference. It has its own
space in the warehouse and is unconnected to the array. To be more specific, the array is
on the heap and the int variable is on the stack.

Arrays are objects
We said that arrays are reference variables. Think of an array variable as an address to
a group of variables of a given type. Perhaps, using the warehouse analogy, someArray
is an aisle number. So, someArray[0], someArray[1], and so on are the aisle
numbers followed by the position number in the aisle.

Arrays are also objects; that is, they have methods and properties that we can use. See this,
for example:

int lengthOfSomeArray = someArray.length;

In the preceding code, we assigned the length of someArray to the int variable called
lengthOfSomeArray.

We can even declare an array of arrays. This is an array where in each of its elements lurks
another array, as follows:

String[][] countriesAndCities;

In the preceding array, we could hold a list of cities within each country. Let's not go array
crazy just yet, though. Just remember that an array holds up to a pre-determined number
of variables of any pre-determined type, and those values are accessed using this syntax:

someArray[someLocation];

Let's use some arrays in a real app to try and get an understanding of how to use them in
real code and what we might use them for.

Telegram Channel @IRFaraExam

396 Arrays, Maps, and Random Numbers

Simple array example mini-app
Let's make a simple working array example. You can get the completed code for this
example in the downloadable code bundle. It's at Chapter 15/Simple Array
Example/MainActivity.java.

Create a project using the Empty Activity template and call it Simple Array
Example.

First, we declare our array, allocate five spaces, and initialize values for each of the
elements. Then we output each of the values to the logcat console. Add this code to the
onCreate method just after the call to setContentView:

// Declaring an array

int[] ourArray;

// Allocate memory for a maximum size of 5 elements

ourArray = new int[5];

// Initialize ourArray with values

// The values are arbitrary, but they must be int

// The indexes are not arbitrary. 0 through 4 or crash!

ourArray[0] = 25;

ourArray[1] = 50;

ourArray[2] = 125;

ourArray[3] = 68;

ourArray[4] = 47;

//Output all the stored values

Log.i("info", "Here is ourArray:");

Log.i("info", "[0] = "+ourArray[0]);

Log.i("info", "[1] = "+ourArray[1]);

Log.i("info", "[2] = "+ourArray[2]);

Log.i("info", "[3] = "+ourArray[3]);

Log.i("info", "[4] = "+ourArray[4]);

Telegram Channel @IRFaraExam

Simple array example mini-app 397

Next, we add each of the elements of the array together, just as we could regular int
type variables. Notice that when we add the array elements together, we are doing so over
multiple lines. This is fine as we have omitted a semicolon until the last operation, so the
Java compiler treats the lines as one statement. Add the code we have just discussed to
MainActivity.java:

/*

 We can do any calculation with an array element

 provided it is appropriate to the contained type

 Like this:

*/

int answer = ourArray[0] +

ourArray[1] +

ourArray[2] +

ourArray[3] +

ourArray[4];

Log.i("info", "Answer = "+ answer);

Run the example and see the output in the logcat window.

Remember that nothing will happen on the emulator display as all the output will be sent
to our logcat console window in Android Studio. Here is the output:

info: Here is ourArray:

info: [0] = 25

info: [1] = 50

info: [2] = 125

info: [3] = 68

info: [4] = 47

info: Answer = 315

We declared an array called ourArray to hold int variables, then allocated space for up
to five of that type.

Next, we assigned a value to each of the five spaces in our array. Remember that the first
space is ourArray[0] and the last space is ourArray[4].

Telegram Channel @IRFaraExam

398 Arrays, Maps, and Random Numbers

Next, we simply printed the value in each array location to the console, and from the
output, we can see they hold the values we initialized them to be in the previous step.
Then we added together each of the elements in ourArray and initialized their values to
the answer variable. We then printed answer to the console and we can see that indeed
all the values were added together, just as if they were plain old int types, which they are,
just stored and accessed in a different manner.

Getting dynamic with arrays
As we discussed at the beginning of all this array stuff, if we need to declare and initialize
each element of an array individually, there isn't a huge amount of benefit to an array over
regular variables. Let's look at an example of declaring and initializing arrays dynamically.

Dynamic array example
Let's make a simple dynamic array example. You can get the working project for this
example in the download bundle. It is at Chapter 15/Dynamic Array Example/
MainActivity.java.

Create a project using the Empty Activity template and call it Dynamic Array
Example.

Type the following code just after the call to the setContentView method in the
onCreate method. See whether you can work out what the output will be before we
discuss it and analyze the code:

// Declaring and allocating in one step

int[] ourArray = new int[1000];

// Let's initialize ourArray using a for loop

// Because more than a few variables is allot of typing!

for(int i = 0; i < 1000; i++){

 // Put the value of our value into ourArray

 // At the position decided by i.

 ourArray[i] = i*5;

 //Output what is going on

 Log.i("info", "i = " + i);

Telegram Channel @IRFaraExam

Getting dynamic with arrays 399

 Log.i("info", "ourArray[i] = " + ourArray[i]);

}

Run the example app, remembering that nothing will happen on the screen as all the
output will be sent to our logcat console window in Android Studio. Here is the output:

info: i = 0

info: ourArray[i] = 0

info: i = 1

info: ourArray[i] = 5

info: i = 2

info: ourArray[i] = 10

... 994 iterations of the loop removed for brevity.

info: ourArray[i] = 4985

info: i = 998

info: ourArray[i] = 4990

info: i = 999

info: ourArray[i] = 4995

First, we declared and allocated an array called ourArray to hold up to 1,000 int values.
Notice that this time we did the two steps in one line of code:

int[] ourArray = new int[1000];

Then we used a for loop that was set to loop 1,000 times:

(int i = 0; i < 1000; i++){

We initialized the spaces in the array, from 0 through to 999, with the value of i
multiplied by 5, like this:

ourArray[i] = i*5;

Then, to demonstrate the value of i and the value held in each position of the array, we
output the value of i followed by the value held in the corresponding position in the array,
like so:

Log.i("info", "i = " + i);

Log.i("info", "ourArray[i] = " + ourArray[i]);

Telegram Channel @IRFaraExam

400 Arrays, Maps, and Random Numbers

And all this happened 1,000 times, producing the output we have seen. Of course, we have
yet to use this technique in a real-world app, but we will use it soon to make our Note to
Self app hold an almost infinite number of notes.

Entering the nth dimension with arrays
We very briefly mentioned that an array can even hold other arrays at each position. But if
an array holds lots of arrays that hold lots of some other type, how do we access the values
in the contained arrays? And why would we ever need this anyway? Look at this next
example of where multidimensional arrays can be useful.

Multidimensional array mini-app
Let's make a simple multidimensional array example. You can get the working project
for this example in the download bundle. It is in Chapter 15/Multidimensional
Array Example/MainActivity.java.

Create a project using the Empty Activity template and call it Multidimensional
Array Example.

After the call to setContentView in onCreate, add the following code, including
declaring and initializing a two-dimensional array (highlighted):

// Random object for generating question numbers

Random randInt = new Random();

// a variable to hold the random value generated

int questionNumber;

// declare and allocate in separate stages for clarity

// but we don't have to

String[][] countriesAndCities;

// Now we have a 2 dimensional array

countriesAndCities = new String[5][2];

// 5 arrays with 2 elements each

// Perfect for 5 "What's the capital city" questions

// Now we load the questions and answers into our arrays

// You could do this with less questions to save typing

// But don't do more or you will get an exception

Telegram Channel @IRFaraExam

Entering the nth dimension with arrays 401

countriesAndCities [0][0] = "United Kingdom";

countriesAndCities [0][1] = "London";

countriesAndCities [1][0] = "USA";

countriesAndCities [1][1] = "Washington";

countriesAndCities [2][0] = "India";

countriesAndCities [2][1] = "New Delhi";

countriesAndCities [3][0] = "Brazil";

countriesAndCities [3][1] = "Brasilia";

countriesAndCities [4][0] = "Kenya";

countriesAndCities [4][1] = "Nairobi";

Now we output the contents of the array using a for loop and our Random object. Note
how we ensure that although the question is random, we can always pick the correct
answer. Add the following code after the previous code:

/*

 Now we know that the country is stored at element 0

 The matching capital at element 1

 Here are two variables that reflect this

*/

int country = 0;

int capital = 1;

// A quick for loop to ask 3 questions

for(int i = 0; i < 3; i++){

 // get a random question number between 0 and 4

 questionNumber = randInt.nextInt(5);

 // and ask the question and in this case just

 // give the answer for the sake of brevity

 Log.i("info", "The capital of "

 +countriesAndCities[questionNumber][country]);

Telegram Channel @IRFaraExam

402 Arrays, Maps, and Random Numbers

 Log.i("info", "is "

 +countriesAndCities[questionNumber][capital]);

} // end of for loop

Run the example, remembering that nothing will happen on the screen as all the output
will be sent to our logcat console window in Android Studio. Here is the output:

info: The capital of USA

info: is Washington

info: The capital of India

info: is New Delhi

info: The capital of United Kingdom

info: is London

What just happened? Let's go through this chunk by chunk so we know exactly what is
going on.

We make a new object of type Random called randInt, ready to generate random
numbers later in the program:

Random randInt = new Random();

There's a simple int variable to hold a question number:

int questionNumber;

And here we declare our array of arrays called countriesAndCities. The outer array
holds arrays:

String[][] countriesAndCities;

Now we allocate space within our arrays. The first outer array will now be able to hold five
arrays and each of the inner arrays will be able to hold two strings:

countriesAndCities = new String[5][2];

Telegram Channel @IRFaraExam

Entering the nth dimension with arrays 403

Now we initialize our arrays to hold countries and their corresponding capital cities.
Notice with each pair of initializations that the outer array number stays the same,
indicating that each country/capital pair is within one inner array, a String array.
And of course, each of these inner arrays is held in one element of the outer array
(which holds arrays):

countriesAndCities [0][0] = "United Kingdom";

countriesAndCities [0][1] = "London";

countriesAndCities [1][0] = "USA";

countriesAndCities [1][1] = "Washington";

countriesAndCities [2][0] = "India";

countriesAndCities [2][1] = "New Delhi";

countriesAndCities [3][0] = "Brazil";

countriesAndCities [3][1] = "Brasilia";

countriesAndCities [4][0] = "Kenya";

countriesAndCities [4][1] = "Nairobi";

To make the upcoming for loop clearer, we declare and initialize int variables to
represent the country and the capital from our arrays. If you glance back at the array
initialization, all the countries are held in position 0 of the inner array and all the
corresponding capital cities are at position 1:

int country = 0;

int capital = 1;

Now we set up a for loop to run three times. Note that this does not simply access the
first three elements of our array; it just determines the number of times we go through the
loop. We could make it loop one time or a thousand times; the example would still work:

for(int i = 0; i < 3; i++){

Next, we determine which question to ask – or more specifically, which element of our
outer array. Remember that randInt.nextInt(5) returns a number between 0 and
4 – just what we need, as we have an outer array with five elements, 0 through 4:

questionNumber = randInt.nextInt(5);

Telegram Channel @IRFaraExam

404 Arrays, Maps, and Random Numbers

Now we can ask a question by outputting the strings held in the inner array, which in turn
is held by the outer array that was chosen in the previous line by the randomly generated
number:

 Log.i("info", "The capital of "

 +countriesAndCities[questionNumber][country]);

 Log.i("info", "is "

 +countriesAndCities[questionNumber][capital]);

}//end of for loop

For the record, we will not be using any multidimensional arrays in the rest of this
book. So, if there is still a little bit of murkiness around these arrays inside arrays, then
that doesn't matter. You know they exist, what they can do, and you can revisit them if
necessary.

Array-out-of-bounds exceptions
An array-out-of-bounds exception occurs when we attempt to access an element of an
array that does not exist. Sometimes the compiler will catch it for us to prevent the error
going into a working app. For example, see this code:

int[] ourArray = new int[1000];

int someValue = 1; // Arbitrary value

ourArray[1000] = someValue;

// Won't compile as compiler knows this won't work.

// Only locations 0 through 999 are valid

But what if we do something like this:

int[] ourArray = new int[1000];

int someValue = 1;// Arbitrary value

int x = 999;

if(userDoesSomething){

 x++; // x now equals 1000

}

ourArray[x] = someValue;

// Array out of bounds exception if userDoesSomething

Telegram Channel @IRFaraExam

ArrayList 405

// evaluates to true! This is because we end up referencing

// position 1000 when the array only has positions 0

// through 999

// Compiler can't spot it. App will crash!

The only way we can avoid this problem is to know the rule: the rule that arrays start at
zero and go up to their length – 1. We can also use clear, readable code where it is easy to
evaluate what we have done and spot problems more easily.

ArrayList
ArrayList is like a regular Java array on steroids. It overcomes some of the shortfalls of
arrays, such as having to predetermine the size. It adds some useful methods to make its
data easy to manage and it uses an enhanced version of a for loop that is clearer to use
than a regular for loop.

Let's look at some code that uses an ArrayList instance:

// Declare a new ArrayList called myList to hold int variables

ArrayList<int> myList;

// Initialize the myList ready for use

myList = new ArrayList<int>();

In the previous code, we declared and initialized a new ArrayList called myList. We
can also do this in a single step like this code shows:

ArrayList<int> myList = new ArrayList<int>();

Nothing especially interesting so far, so let's take a look at what we can actually do with
ArrayList. Let's use a String ArrayList instance this time:

// declare and initialize a new ArrayList

ArrayList<String> myList = new ArrayList<String>();

// Add a new String to myList in the next available location

myList.add("Donald Knuth");

// And another

myList.add("Rasmus Lerdorf");

// And another

Telegram Channel @IRFaraExam

406 Arrays, Maps, and Random Numbers

myList.add("Richard Stallman");

// We can also choose 'where' to add an entry

myList.add(1, "James Gosling");

// Is there anything in our ArrayList?

if(myList.isEmpty()){

 // Nothing to see here

}else{

 // Do something with the data

}

// How many items in our ArrayList?

int numItems = myList.size();

// Now where did I put James Gosling?

int position = myList.indexOf("James Gosling");

In the previous code, we saw that we can use some really useful methods of the
ArrayList class on our ArrayList object; those methods are listed as follows:

• We can add an item (myList.add).

• Add at a specific location (myList.add(x, value)).

• Check whether ArrayList is empty (myList.isEmpty).

• See how many elements it has (myList.size()).

• Get the current position of a given item (myList.indexOf).

Note
There are even more methods in the ArrayList class and you can read
about them here: http://docs.oracle.com/javase/7/docs/
api/java/util/ArrayList.html. What we have seen so far is
enough to complete this book, however.

With all this functionality, all we need now is a way to handle ArrayList instances
dynamically.

Telegram Channel @IRFaraExam

Arrays and ArrayList instances are polymorphic 407

The enhanced for loop
This is what the condition of an enhanced for loop looks like:

for (String s : myList)

The previous example would iterate (step through) all of the items in myList one at a
time. At each step, s would hold the current String value.

So, this code would print to the console all of our eminent programmers from the
previous section's ArrayList code sample:

for (String s : myList){

 Log.i("Programmer: ","" + s);

}

We can also use the enhanced for loop with regular arrays too:

int [] anArray = new int [];

// We can initialize arrays quickly like this

anArray {0, 1, 2, 3, 4, 5}

for (int s : anArray){

 Log.i("Contents = ","" + s);

}

There's another incoming news flash!

Arrays and ArrayList instances are
polymorphic
We already know that we can put objects into arrays and ArrayList. But being
polymorphic means they can handle objects of multiple distinct types as long as they have
a common parent type all within the same array or ArrayList.

In Chapter 10, Object-Oriented Programming, we learned that polymorphism means
different forms. But what does it mean to us in the context of arrays and ArrayList?

Boiled down to its simplest: any subclass can be used as part of the code that uses the
superclass.

Telegram Channel @IRFaraExam

408 Arrays, Maps, and Random Numbers

For example, if we have an array of Animal instances, we could put any object that
is a type that is a subclass of Animal in the Animal array – perhaps Cat and Dog
instances.

This means we can write code that is simpler and easier to understand, and easier to
change:

// This code assumes we have an Animal class

// And we have a Cat and Dog class that extends Animal

Animal myAnimal = new Animal();

Dog myDog = new Dog();

Cat myCat = new Cat();

Animal [] myAnimals = new Animal[10];

myAnimals[0] = myAnimal; // As expected

myAnimals[1] = myDog; // This is OK too

myAnimals[2] = myCat; // And this is fine as well

Also, we can write code for the superclass and rely on the fact that no matter how many
times it is sub-classed, within certain parameters the code will still work. Let's continue
our previous example:

// 6 months later we need elephants

// with its own unique aspects

// If it extends Animal we can still do this

Elephant myElephant = new Elephant();

myAnimals[3] = myElephant; // And this is fine as well

But when we remove an object from a polymorphic array, we must remember to cast
it to the type we want:

Cat newCat = (Cat) myAnimals[2];

All we have just discussed is true for ArrayList as well. Armed with this new tool kit
of arrays, ArrayList, and the fact that they are polymorphic, we can move on to learn
about some more Android classes that we will soon use to enhance our Note to Self app.

Telegram Channel @IRFaraExam

More Java collections – meet the Java HashMap 409

More Java collections – meet the Java
HashMap
The Java HashMap is neat. It's part of the Java collections framework and a kind of cousin
of the ArrayList class that we will use in the Note to Self project in the next chapter.
They basically encapsulate useful data storage techniques that would otherwise be quite
technical for us to code successfully for ourselves.

I thought it would be worth taking a first look at HashMap on its own. Suppose we want
to store the data of lots of characters from a role-playing game and each different character
is represented by an object of type Character.

We could use some of the Java tools we already know about, such as arrays or
ArrayList. The Java HashMap is also like these things, but with HashMap we can give
a unique key/identifier to each Character object and access any such object using that
key/identifier.

The term hash comes from the process of turning our chosen key/identifier into
something used internally by the HashMap class. The process is called hashing.

Any of our Character instances can then be accessed with our chosen key/identifier.
A good candidate for a key/identifier in the Character class scenario would be the
character's name.

Each key/identifier has a corresponding object; in this case, it is of type Character. This
is known as a key-value pair.

We just give HashMap a key and it gives us the corresponding object. No need to worry
about in which index we stored our characters, whether it's Geralt, Ciri, or Triss; just pass
the name to HashMap and it will do the work for us.

Let's look at some examples. You don't need to type any of this code – just get familiar
with how it works.

We can declare a new HashMap to hold keys and Character instances like this code:

Map<String, Character> characterMap;

The previous code assumes we have coded a class called Character.

Telegram Channel @IRFaraExam

410 Arrays, Maps, and Random Numbers

We can initialize HashMap like this:

characterMap = new HashMap();

We can add a new key and its associated object like this:

characterMap.put("Geralt", new Character());

We can also use this:

characterMap.put("Ciri", new Character());

And we can use this:

characterMap.put("Triss", new Character());

Note
All the example code assumes that we can somehow give the Character
instances their unique properties to reflect their internal differences elsewhere.

We can then retrieve an entry from HashMap like this:

Character ciri = characterMap.get("Ciri");

Or perhaps we can use the Character class's methods directly like this:

characterMap.get("Geralt").drawSilverSword();

// Or maybe call some other hypothetical method

characterMap.get("Triss").openFastTravelPortal("Kaer Morhen");

The previous code calls the hypothetical drawSilverSword and
openFastTravelPortal methods on the Character class.

Note
The HashMap class also has lots of useful methods, such as ArrayList. See
the official Java page for HashMap here: https://docs.oracle.com/
javase/tutorial/collections/interfaces/map.html.

Telegram Channel @IRFaraExam

https://docs.oracle.com/javase/tutorial/collections/interfaces/map.html
https://docs.oracle.com/javase/tutorial/collections/interfaces/map.html

The Note to Self app 411

Let's talk about the Note to Self app.

The Note to Self app
Despite all we have learned, we are not quite ready to apply a solution to the Note to Self
app. We could update our code to store lots of notes in an ArrayList instance, but
before we do, we also need a way to display the contents of ArrayList in the UI.
It wouldn't look good to throw the whole ArrayList contents into a TextView widget,
for example.

The solution is adapters and a special UI layout called RecyclerView. We will get to
them in the next chapter.

Frequently asked questions
1. How does a computer that can only make real calculations possibly generate

a genuinely random number?

In reality, a computer cannot create a number that is truly random, but the Random
class uses a seed that produces a number that would stand up as genuinely random
under close statistical scrutiny. To find out more about seeds and generating
random numbers, look at this article: https://en.wikipedia.org/wiki/
Random_number_generation.

Summary
In this chapter, we looked at how to use simple Java arrays to store substantial amounts
of data provided it is of the same type. We also used the ArrayList class, which is
like an array with loads of extra features. Furthermore, we found out that both arrays
and ArrayList instances are polymorphic, which means that a single array (or
ArrayList) can hold multiple different objects as long as they are all derived from the
same parent class.

In addition, we learned about the HashMap class, which is also a data storage solution
but allows access in different ways.

In the next chapter, we will learn about the Adapter and RecyclerView classes to put
our theory into practice and enhance the Note to Self app.

Telegram Channel @IRFaraExam

https://en.wikipedia.org/wiki/Random_number_generation
https://en.wikipedia.org/wiki/Random_number_generation

Telegram Channel @IRFaraExam

16
Adapters and

Recyclers
In this brief chapter, we will achieve a lot. We will first go through the theory of adapters
and lists – how we can extend the RecyclerAdapter class in Java code and add a
RecyclerView instance that acts as a list to our UI – and then through the apparent
magic of how the Android API binds them together so that RecyclerView displays the
contents of RecyclerAdapter and allows the user to scroll through the contents. You
have probably guessed that we will be using this technique to display our list of notes in
the Note to Self app.

In this chapter, we will cover the following:

• Looking at the theory of adapters and binding them to our UI

• Implementing the layout with RecyclerView

• Laying out a list item for use in RecyclerView

• Implementing the adapter with RecyclerAdapter

• Binding the adapter to RecyclerView

• Storing notes in ArrayList and displaying them in RecyclerView

• Discussing how we can improve the Note to Self app further

Telegram Channel @IRFaraExam

414 Adapters and Recyclers

Soon we will have a self-managing layout that holds and displays all of our notes, so let's
get started.

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2016.

RecyclerView and RecyclerAdapter
In Chapter 5, Beautiful Layouts with CardView and ScrollView, we used ScrollView
and we populated it with a few CardView widgets so we could see it scrolling. We could
take what we have just learned about arrays and ArrayList and create an array of
TextView widgets, use them to populate a ScrollView, and within each TextView
place the title of a note. This sounds like a perfect solution for showing each note so that it
is clickable in the Note to Self app.

We could create the TextView widgets dynamically in Java code, set their text property
to be the title of a note, and then add the TextView widgets to a LinearLayout
contained in a ScrollView. However, this is imperfect.

The problem with displaying lots of widgets
This might seem fine, but what if there were dozens, hundreds, or even thousands of
notes? We couldn't have thousands of TextView widgets in memory because the
Android device might simply run out of memory or at the very least grind to a halt as it
tries to handle the scrolling of such a vast amount of widgets and their data.

Now, also imagine that we wanted (which we do) each note in the ScrollView to show
whether it was important, a to-do, or an idea. And how about a short snippet from the text
of the note as well?

We would need to devise some clever code that loads and destroys Note objects and
multiple TextView widgets per note from multiple ArrayList instances. It can be
done, but doing it efficiently is far from straightforward.

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2016
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2016
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2016

RecyclerView and RecyclerAdapter 415

The solution to the problem of displaying
lots of widgets
Fortunately, this is a problem faced so commonly by mobile developers that the Android
API has a solution built in.

We can add a single widget called RecyclerView (like an environmentally friendly
ScrollView but with boosters too) to our UI layout. The RecyclerView class was
designed precisely as a solution to the problem we have been discussing. In addition, we
need to interact with RecyclerView with a special type of class that understands how
RecyclerView works.

We will interact with it using an adapter. We will use the RecyclerAdapter class,
extend it, customize it, and then use it to control the data from our ArrayList instance
(which will hold our Note instances) and display it in RecyclerView.

Let's find out a bit more about how the RecyclerView and RecyclerAdapter
classes work.

How to use RecyclerView and RecyclerAdapter
We already know how to store almost unlimited notes; we can do so in an ArrayList
instance, although we haven't implemented it yet. We also know that there is a UI layout
called RecyclerView that is specifically designed to display potentially long lists of data
from an ArrayList instance. We just need to see how to put it all into action.

To add a RecyclerView widget to our layout, we can simply drag and drop it, from the
palette onto our UI, in the usual way. Don't do it yet. Let's just discuss it for a bit first.

Telegram Channel @IRFaraExam

416 Adapters and Recyclers

The RecyclerView widget will look like this in the UI designer if you added one
underneath the button in content_main.xml, for example:

Figure 16.1 – RecyclerView widget

This appearance, however, is more a representation of the possibilities than the actual
appearance of an app. If we run the app straight after adding a RecyclerView widget,
we just get a blank area where the RecyclerView widget is.

The first thing we need to do, to make practical use of RecyclerView, is to decide
what each item in the list will look like. It could be just a single TextView widget or
it could be an entire layout. We will use LinearLayout. To be clear and specific, we
will use a LinearLayout that holds three TextView widgets for each item in our
RecyclerView. This will allow us to display the note status (important, idea, or to-do),
the note title, and a short snippet of text from the actual note contents.

A list item needs to be defined in its own XML file, then RecyclerView can hold
multiple instances of this list item layout.

Telegram Channel @IRFaraExam

RecyclerView and RecyclerAdapter 417

Of course, none of this explains how we overcome the complexity of managing what data
is shown in which list item and how it is retrieved from an ArrayList.

This data handling is taken care of by our own customized implementation of the
RecyclerAdapter class. The RecyclerAdapter class implements the Adapter
interface. We don't need to know how Adapter works internally; we just need to
override the necessary methods, and then RecyclerAdapter will do all the work of
communicating with our RecyclerView widget.

Wiring up an implementation of RecyclerAdapter to RecyclerView is certainly
more complicated than dragging 20 TextView instances onto a ScrollView – but once
it is done, we can forget about it and it will keep on working and manage itself regardless
of how many notes we add to the ArrayList. It also has built-in features for handling
things such as neat formatting and detecting which item in a list was clicked.

We will need to override some methods of the RecyclerAdapter class and add a little
code of our own.

What we will do to set up RecyclerView with
RecyclerAdapter and an ArrayList of notes
Let's look at an outline of the required steps so we know what to expect. To get the whole
thing up and running, we would do the following:

1. Delete the temporary button and related code, and then add a RecyclerView
widget to our layout with a specific id property.

2. Create an XML layout to represent each item in the list. We have already
mentioned each item in the list will be a LinearLayout that contains three
TextView widgets.

3. Create a new class that extends RecyclerAdapter and add code to several
overridden methods to control how it looks and behaves, including using our list
item layout and ArrayList full of Note instances.

4. Add code to the MainActivity class to use the RecyclerAdapter class and
the RecyclerView widget and bind it to our ArrayList instance.

5. Add an ArrayList to MainActivity to hold all our notes and update the
createNewNote method to add any new notes created in the DialogNewNote
class to this ArrayList.

Let's walk through each of these steps in detail.

Telegram Channel @IRFaraExam

418 Adapters and Recyclers

Adding RecyclerView, RecyclerAdapter, and
ArrayList to the Note to Self project
Open the Note to Self project. As a reminder, if you want to see the completed code and
working app as a result of completing this chapter, it can be found in the Chapter 16/
Note to self folder.

Note
As the required actions in this chapter jump around between different files,
classes, and methods, I encourage you to follow along with the files from the
download bundle by keeping it open for reference in your preferred text editor.

Removing the temporary "Show Note" button and
adding RecyclerView
These next few steps will get rid of the temporary code we added in Chapter 14,
Android Dialog Windows, and set up our RecyclerView widget ready for binding to
RecyclerAdapter later in the chapter:

1. In the content_main.xml file, remove the temporary Button with an ID of
button, which we added previously for testing purposes.

2. In the onCreate method of the MainActivity.java file, delete the Button
instance declaration and initialization along with the anonymous class that handles
its clicks as this code now creates an error. We will delete some more temporary
code later in this chapter. Delete the following code:

// Temporary code

Button button = (Button) findViewById(R.id.button);

button.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 // Create a new DialogShowNote called dialog

 DialogShowNote dialog = new DialogShowNote();

 // Send the note via the sendNoteSelected

 method

Telegram Channel @IRFaraExam

Adding RecyclerView, RecyclerAdapter, and ArrayList to the Note to Self project 419

 dialog.sendNoteSelected(mTempNote);

 // Create the dialog

 dialog.show(getSupportFragmentManager(),

 "123");

 }

});

3. Now switch back to the content_main.xml file in design view and drag a
RecyclerView widget from the Containers category of the palette onto the layout.

4. Set its id property to recyclerView.

Now we have removed the temporary UI aspects from our project and we have a
RecyclerView widget complete with a unique id value ready to be referenced from our
Java code.

Creating a list item for RecyclerView
Next, we need a layout to represent each item in our RecyclerView widget. As
previously mentioned, we will use a LinearLayout that holds three TextView
widgets.

Use the following steps to create a list item for use within our RecyclerView:

1. Right-click on the layout folder in the project explorer and select New | Layout
resource file. Enter listitem in the Name field and set Root element to
LinearLayout.

2. Make sure you are on the Design tab and set the orientation attribute to
vertical.

Telegram Channel @IRFaraExam

420 Adapters and Recyclers

3. Look at the next screenshot to see what we are trying to achieve with the remaining
steps of this section. I have annotated it to show what each part will be in the
finished app:

Figure 16.2 – List item for use within our RecyclerView

4. Drag three TextView widgets onto the layout, one above the other, as per the
reference image. The first (top) will hold the note status/type (idea, important,
or to-do). The second (middle) will hold the note title and the third (bottom) the
snippet of text from the note itself.

5. Configure the various attributes of the LinearLayout and TextView widgets
as shown in the following table:

Telegram Channel @IRFaraExam

Adding RecyclerView, RecyclerAdapter, and ArrayList to the Note to Self project 421

Now we have a RecylerView widget for the main layout and a layout to use for each
item in the list of RecyclerView. We can go ahead and code our RecyclerAdapter
class implementation.

Coding the RecyclerAdapter class
We will now create and code a brand-new class. Let's call our new class NoteAdapter.
Create a new class called NoteAdapter in the same folder as the MainActivity class
(and all the other classes).

Edit the code for the NoteAdapter class by adding these import statements and
extending it with the RecyclerView.Adapter class, and then add these two important
member variables. Edit the NoteAdapter class to be the same as the following code that
we have just discussed:

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.TextView;

import java.util.List;

import androidx.recyclerview.widget.RecyclerView;

public class NoteAdapter extends

 RecyclerView.Adapter<NoteAdapter.ListItemHolder> {

 private List<Note> mNoteList;

 private MainActivity mMainActivity;

}

Notice the class declaration is underlined in red showing there is an error in our code. The
error is there because the RecylerView.Adapter class (that we are extending) needs
us to override some of its abstract methods.

Note
We discussed abstract classes and their methods in Chapter 11, More Object-
Oriented Programming.

Telegram Channel @IRFaraExam

422 Adapters and Recyclers

The quickest way to do this is to click the class declaration, hold the Alt key, and then tap
the Enter key. Choose Implement methods, as shown in the following screenshot:

Figure 16.3 – Selecting Implement methods

Then, click OK to have Android Studio auto-generate the required methods.

This process adds the following three methods:

• The onCreateViewHolder method, which is called when a layout for a list item
is required.

• The onBindViewHolder method, which is called when RecyclerAdapter is
bound to (connected/associated with) RecyclerView in the layout.

• The getItemCount method, which will be used to return the number of Note
instances in ArrayList. Now it just returns 0.

We will soon add code to each of these methods to do the required work at the specified
time.

Telegram Channel @IRFaraExam

Adding RecyclerView, RecyclerAdapter, and ArrayList to the Note to Self project 423

Note, however, that we still have multiple errors in our code, including in the
auto-generated methods as well as the class declaration. A screenshot of the code
editor at this stage might be useful:

Figure 16.4 – Multiple errors in our code

The errors are there because the NoteAdapter.ListItemHolder class does not exist.
ListItemHolder was added by us when we extended NoteAdapter. It is our chosen
class type that will be used as the holder for each list item. At the moment, it doesn't exist,
hence the error. The two methods that also have the same error for the same reason were
auto-generated when we asked Android Studio to implement the missing methods.

Let's solve the problem by making a start on the required ListItemHolder class. It is
useful to us if ListItemHolder instances share data/variables with NoteAdapter,
therefore we will create ListItemHolder as an inner class.

Telegram Channel @IRFaraExam

424 Adapters and Recyclers

Click the error in the class declaration and select Create class 'ListItemHolder', as shown
in the following screenshot:

Figure 16.5 – Selecting Create class 'ListItemHolder'

The following code has been added to the NoteAdapter class:

public class ListItemHolder {

}

But there is still one error with the class declaration, as shown in this screenshot:

Figure 16.6 – Error with the class declaration

The error message reads …should extend 'android.recylerview.widget.RecyclerView.
ViewHolder' because we may have added ListItemHolder but ListItemHolder
must also extend RecyclerView.ViewHolder in order to be used as the
parameterized type.

Amend the declaration of the ListItemHolder class to match this code:

public class ListItemHolder extends

 RecyclerView.ViewHolder

 implements View.OnClickListener {

}

Telegram Channel @IRFaraExam

Adding RecyclerView, RecyclerAdapter, and ArrayList to the Note to Self project 425

Now the error is gone from the NoteAdapter class declaration but because we
implemented View.OnClickListener, we need to implement the onClick method.
Furthermore, ViewHolder doesn't provide a default constructor, so we need to do
it. Add the following onClick method (empty for now) and this constructor method
(empty for now) to the ListItemHolder class:

public ListItemHolder(View view) {

 super(view);

}

@Override

public void onClick(View view) {

}

Note
Be sure you added the code to the inner ListItemHolder class and not
the NoteAdapter class.

After much tinkering and auto-generating, we finally have an error-free NoteAdapter
class complete with overridden methods and an inner class that we can code to get our
RecyclerAdapter class working. In addition, we can write code to respond to clicks
(in the onClick method) on each of our ListItemHolder instances.

Coding the NoteAdapter constructor
Next, we will code the NoteAdapter constructor method, which will initialize the
members of the NoteAdapter class. Add this constructor to the NoteAdapter class:

public NoteAdapter(MainActivity mainActivity,

 List<Note> noteList) {

 mMainActivity = mainActivity;

 mNoteList = noteList;

}

Telegram Channel @IRFaraExam

426 Adapters and Recyclers

First, notice the parameters of the constructor. It receives a MainActivity instance
as well as a List. This implies that when we use this class, we will need to send in
a reference to the main activity of this app (MainActivity) as well as a List/
ArrayList. We will see what use we put the MainActivity reference to shortly, but
we can sensibly guess that the reference to a List with the parameterized <Note> type
will be a reference to our ArrayList of Note instances that we will soon code in the
MainActivity class. NoteAdapter will then hold a permanent reference to all the
user's notes.

Coding the onCreateViewHolder method
Next, we will adapt the auto-generated onCreateViewHolder method. Add the
two highlighted lines of code to the onCreateViewHolder method and study the
parameters that were auto-generated:

@NonNull

@Override

public NoteAdapter.ListItemHolder onCreateViewHolder(

 @NonNull ViewGroup parent, int viewType) {

 View itemView = LayoutInflater.from(parent.getContext())

 .inflate(R.layout.listitem, parent,

 false);

 return new ListItemHolder(itemView);

}

This code works by initializing itemView using LayoutInflater and our newly
designed listitem layout. It then returns a new ListItemHolder instance complete
with an inflated and ready-to-use layout.

Coding the onBindViewHolder method
Next, we will adapt the onBindViewHolder method. Add the highlighted code to make
the method the same as this code and also make sure to study the method's parameters as
well:

Telegram Channel @IRFaraExam

Adding RecyclerView, RecyclerAdapter, and ArrayList to the Note to Self project 427

@Override

public void onBindViewHolder(

@NonNull NoteAdapter.ListItemHolder holder, int position) {

 Note note = mNoteList.get(position);

 holder.mTitle.setText(note.getTitle());

 // Show the first 15 characters of the actual note

 // Unless a short note then show half

if(note.getDescription().length() > 15) {

holder.mDescription.setText(note.getDescription()

.substring(0, 15));

}

else{

 holder.mDescription.setText(note.getDescription()

 .substring(0, note.getDescription().length() /2));

}

 // What is the status of the note?

 if(note.isIdea()){

 holder.mStatus.setText(R.string.idea_text);

 }

 else if(note.isImportant()){

 holder.mStatus.setText(R.string.important_text);

 }

 else if(note.isTodo()){

 holder.mStatus.setText(R.string.todo_text);

 }

}

First, the code checks whether the note is longer than 15 characters and if it is, it truncates
it so it looks sensible in the list.

Then, it checks what type of note it is (idea, to-do, or important) and assigns the
appropriate label from the string resources.

This new code has left some errors in the code with the holder.mTitle, holder.
mDescription, and holder.mStatus variables because we need to add them to our
ListItemHolder inner class. We will do this very soon.

Telegram Channel @IRFaraExam

428 Adapters and Recyclers

Coding getItemCount
Amend the return statement in this auto-generated method to be the same as the
highlighted line of code shown next:

@Override

public int getItemCount() {

 return mNoteList.size();

}

This code is used internally by the class and it supplies the current number of items in
ArrayList.

Coding the ListItemHolder inner class
Now we can turn our attention to the inner class, ListItemHolder. Adapt the
ListItemHolder inner class by adding the following highlighted code:

public class ListItemHolder

 extends RecyclerView.ViewHolder

 implements View.OnClickListener {

 TextView mTitle;

 TextView mDescription;

 TextView mStatus;

 public ListItemHolder(View view) {

 super(view);

 mTitle =

 view.findViewById(R.id.textViewTitle);

 mDescription =

 view.findViewById(R.id.textViewDescription);

 mStatus =

 view.findViewById(R.id.textViewStatus);

 view.setClickable(true);

 view.setOnClickListener(this);

Telegram Channel @IRFaraExam

Adding RecyclerView, RecyclerAdapter, and ArrayList to the Note to Self project 429

 }

 @Override

 public void onClick(View view) {

 mMainActivity.showNote(getAdapterPosition());

 }

}

The ListItemHolder constructor just gets a reference to each of the TextView
widgets in the layout. The final two lines of code set the whole view as clickable so that
the operating system will call the next method we discuss, onClick, when a holder is
clicked.

In the onClick method, the call to the mMainActivity.showNote method has an
error because the method doesn't exist yet, but we will fix that in the next section. The call
will show the clicked note in its appropriate DialogFragment instance.

Coding MainActivity to use the RecyclerView and
RecyclerAdapter classes
Now, switch over to the MainActivity class in the editor window. Add these three
new members to the MainActivity class and remove the temporary code shown
commented out next:

// Temporary code

//Note mTempNote = new Note();

private List<Note> noteList = new ArrayList<>();

private RecyclerView recyclerView;

private NoteAdapter mAdapter;

Add the following import directives if you haven't already:

import androidx.recyclerview.widget.RecyclerView;

import java.util.ArrayList;

import java.util.List;

These three members are our ArrayList for all our Note instances, our
RecyclerView instance, and an instance of our class, NoteAdapter.

Telegram Channel @IRFaraExam

430 Adapters and Recyclers

Adding code to the onCreate method
Add the following highlighted code to the onCreate method after the code that handles
presses on the floating action button (shown again for context):

fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 DialogNewNote dialog = new DialogNewNote();

 dialog.show(getSupportFragmentManager(), "");

 }

});

recyclerView =

 findViewById(R.id.recyclerView);

mAdapter = new NoteAdapter(this, noteList);

RecyclerView.LayoutManager mLayoutManager =

 new LinearLayoutManager(getApplicationContext());

recyclerView.setLayoutManager(mLayoutManager);

recyclerView.setItemAnimator(new DefaultItemAnimator());

// Add a neat dividing line between items in the list

recyclerView.addItemDecoration(

 new DividerItemDecoration(this, LinearLayoutManager.
VERTICAL));

// set the adapter

recyclerView.setAdapter(mAdapter);

The preceding code will need the following three import directives:

import androidx.recyclerview.widget.LinearLayoutManager;

import androidx.recyclerview.widget.DefaultItemAnimator;

import androidx.recyclerview.widget.DividerItemDecoration;

Telegram Channel @IRFaraExam

Adding RecyclerView, RecyclerAdapter, and ArrayList to the Note to Self project 431

In the preceding code, we initialize the recyclerView reference with the
RecyclerView instance in the layout. Our NoteAdapter (mAdapter) is initialized
by calling the constructor we coded and note that a reference to MainActivity (this)
and the ArrayList instance is passed in, just as required by the class we have coded
previously.

Next, we create a new object, LayoutManager. In the next line of code, we call
setLayoutManager on recyclerView and pass in this new LayoutManager
instance. Now we can configure some properties of recyclerView.

The setItemAnimator and addItemDecoration methods make each list item a
little more visually enhanced with a separator line between each item in the list. Later,
when we build a settings screen, we will give the user the option to add and remove this
separator.

The last thing we do is call the setAdapter method, which combines our adapter with
our view.

Now we will make some changes to the addNote method.

Modifying the addNote method
In the addNote method, delete the temporary code we added in Chapter 14, Android
Dialog Windows, (shown commented out) and add the new highlighted code shown next:

public void createNewNote(Note n){

 // Temporary code

 //mTempNote = n;

 noteList.add(n);

 mAdapter.notifyDataSetChanged();

}

The new highlighted code adds a note to ArrayList instead of simply initializing a
solitary Note object, which has now been commented out. Then, we need to call the
notifyDataSetChanged method, which lets our adapter know that a new note has
been added.

Telegram Channel @IRFaraExam

432 Adapters and Recyclers

Coding the showNote method
Add this new method, which is called from the NoteAdapter class using the
reference to this class that was passed into the NoteAdapter constructor. More
specifically, it is called from the ListerItemHolder inner class when one of the
items in RecyclerView is tapped by the user. Add the showNote method to the
MainActivity class:

public void showNote(int noteToShow){

 DialogShowNote dialog = new DialogShowNote();

 dialog.sendNoteSelected(noteList.get(noteToShow));

 dialog.show(getSupportFragmentManager(), "");

}

Note
All the errors in the NoteAdapter.java file are now gone.

The code just added will launch a new instance of DialogShowNote and pass in the
specific, required note as pointed to by noteToShow.

Telegram Channel @IRFaraExam

Running the app 433

Running the app
You can now run the app and enter a new note as shown in the following screenshot:

Figure 16.7 – Adding a new note

Telegram Channel @IRFaraExam

434 Adapters and Recyclers

After you have entered several notes of several types, the list (RecyclerView) will look
something like this:

Figure 16.8 – List of notes

Reader challenge
We could have spent more time formatting the layouts of our two dialog
windows. Why not refer to Chapter 5, Beautiful Layouts with CardView and
ScrollView, as well as the Material Design website and do a better job than we
have done so far? Furthermore, you could enhance the RecyclerView
class/list of notes by using CardView instead of LinearLayout.

Don't spend too long adding new notes, however, because there is a slight problem. Close
and restart the app. Uh oh, all the notes are gone!

Telegram Channel @IRFaraExam

Frequently asked questions 435

Frequently asked questions
1. I still don't understand how RecyclerAdapter works – why?

That's because we haven't really discussed it. The reason we have not discussed
the behind-the-scenes details is that we don't need to know them. If we override
the required methods, as we have just seen, everything will work. This is how
RecyclerAdapter and most other classes we use are meant to be: hidden
implementations with public methods to expose the necessary functionality.

2. Do I need to know what is going on inside the RecyclerAdapter class and
other classes as well?

It is true that there are more details about RecyclerAdapter (and almost every
class that we use in this book) that we don't have the space to discuss. It is good
practice to read the official documentation of the classes you use. You can read
more about all the classes from the Android API here: https://developer.
android.com/reference.

Summary
Now we have added the ability to hold multiple notes and implemented the ability to
display them.

We achieved this by learning about and using the RecyclerAdapter class, which
implements the Adapter interface, which allows us to bind together RecyclerView
and ArrayList, allowing the seamless display of data without us (the programmer)
having to worry about the complex code that is part of these classes and that we don't
even see.

In the next chapter, we will start with making the user's notes persist when they quit the
app or switch off their device. In addition, we will create a settings screen and see how we
can make the settings persist as well. We will use different techniques to achieve each of
these goals.

Telegram Channel @IRFaraExam

https://developer.android.com/reference
https://developer.android.com/reference

Telegram Channel @IRFaraExam

17
Data Persistence

and Sharing
In this chapter, we will look at a couple of different ways to save data to an Android
device's permanent storage. Also, for the first time, we will add a second Activity to
our app. It often makes sense when implementing a separate "screen" in our app, such as
a settings screen, to do so in a new Activity. We could go to the trouble of hiding the
original UI and then showing the new UI, but this would quickly lead to confusing and
error-prone code. So, we will see how to add an Activity class and navigate the user
between them.

In summary, in this chapter, we will do the following:

• Learn about using Android intents to switch between Activity classes and
pass data

• Create a simple (very simple) settings screen in a new Activity class for the
Note to Self project

• Persist the settings screen data using the SharedPreferences class

• Learn about JavaScript Object Notation (JSON) for serialization

• Explore Java's try-catch-finally syntax

• Implement saving data in our Note to Self app

Telegram Channel @IRFaraExam

438 Data Persistence and Sharing

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2017.

Android intents
The Intent class is appropriately named. It is a class that demonstrates the intent of an
Activity class from our app. It makes an intent clear and it also facilitates it.

All our apps so far have had just one Activity, but many Android apps comprise more
than one.

In perhaps its most common use, an Intent class allows us to switch between
Activity instances. But of course, Activity instances are made from classes with
member variables. So, what happens to the variable's value – the data – when we switch
between them? Intents handle this problem for us by allowing us to pass data between
Activity instances.

Intents aren't just about wiring up the Activity instances of our app. They also make
it possible to interact with other apps too. For example, we could provide a link in our
app for the user to send an email, make a phone call, interact with social media, or open
a web page in a browser and have the email app, phone call app, social media app, or web
browser do all the work.

There aren't enough pages in this book to really dig deep into interacting with other apps,
and we will mainly focus on switching between activities and passing data.

Switching Activity
Let's say we have an app with two Activity-based classes, because we will soon. We can
assume that as usual, we have an Activity class called MainActivity, which is where
the app starts, and a second Activity called SettingsActivity. This is how we can
swap from MainActivity to SettingsActivity:

// Declare and initialize a new Intent object called myIntent

Intent myIntent = new Intent(this, SettingsActivity.class);

// Switch to the SettingsActivity

startActivity(myIntent);

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2017
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2017
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2017

Android intents 439

Look carefully at how we initialized the Intent object. Intent has a constructor
that takes two arguments. The first is a reference to the current Activity, this.
And the second parameter is the name of the Activity class we want to open,
SettingsActivity.class. The .class part on the end of SettingsActivity
makes it the full name of the Activity class as declared in the AndroidManifest.
xml file, and we will look at that when we experiment with intents shortly.

The only problem is that SettingsActivity doesn't share any of the data of
MainActivity. In a way, this is a good thing because if you need all the data from
MainActivity, then it is a reasonable indication that switching activities might not be
the best way of proceeding with your app's design. It is, however, unreasonable to have
encapsulation so thorough that the two Activity instances know absolutely nothing
about each other.

Passing data between activities
What if we have a sign-in screen for the user and we want to pass the user's credentials
to each Activity of our app? We could do so using intents.

We can add data to an Intent class like this:

// Create a String called username

// and set its value to bob

String username = "Bob";

// Create a new Intent as we have already seen

Intent myIntent = new Intent(this, SettingsActivity.class);

// Add the username String to the Intent

// using the putExtra method of the Intent class

myIntent.putExtra("USER_NAME", username);

// Start the new Activity as we did before

startActivity(myIntent);

Telegram Channel @IRFaraExam

440 Data Persistence and Sharing

In SettingsActivity, we could then retrieve the string like this:

// Here we need an Intent also

// But the default constructor will do

// as we are not switching Activity

Intent myIntent = new Intent();

// Initialize username with the passed in String

String username = intent.getExtra().getStringKey("USER_NAME");

In the previous two blocks of code, we switched Activity in the same way as we have
already seen. But before we called the startActivity method, we used the putExtra
method to load a string into the intent.

We add data using key-value pairs. Each piece of data needs to be accompanied by an
identifier instance that can be used in the retrieving Activity to identify and
retrieve the data.

The identifier name is up to you, but useful/memorable values should be used.

Then, in the receiving Activity, we simply create an intent using the default
constructor:

Intent myIntent = new Intent();

And we can then retrieve the data using the getExtras method and the appropriate
identifier from the key-value pair.

Once we want to start sending more than a few values, it is worth considering different
tactics.

The Intent class can help us when sending more complex data than this, but the
Intent class has its limits. For example, we wouldn't be able to send a Note object.

Adding a settings page to Note to Self
Now that we are armed with all this knowledge about the Android Intent class, we can
add another screen (Activity) to our Note to Self app. We will add a settings screen.

Telegram Channel @IRFaraExam

Adding a settings page to Note to Self 441

We will first create a new Activity for our settings screen and see what effect that has
on the AndroidManifest.xml file; we will then create a very simple layout for our
settings screen and add the Java code to switch from MainActivity to the new one.
We will, however, defer wiring up our settings screen with Java until we have learned how
to save the settings to disk. We will do this later in this chapter and then come back to the
settings screen to make its data persist.

First, let's create that new Activity class. We will call it SettingsActivity.

Creating SettingsActivity
This will be a screen where the user can turn on or off the decorative divider between each
note in the RecyclerView widget. This will not be a comprehensive settings screen but
it will be a useful exercise, and we will learn how to switch between activities as well as
saving data to disk. Follow these steps to get started:

1. In the project explorer, right-click the folder that contains all your .java files
and has the same name as your package. From the pop-up context menu, select
New | Activity | Empty Activity.

2. In the Activity Name field, enter SettingsActivity.

3. Leave all the other options at their defaults and left-click Finish.

Android Studio has created a new Activity-based class for us and its associated .java
file. Let's take a quick peek at some of the work that was done behind the scenes for us
because it is useful to know what is going on.

Open the AndroidManifest.xml file from within the manifests folder in the
project explorer. Notice the following line of code about halfway through this file:

<activity android:name=".SettingsActivity"></activity>

This is how an Activity class is registered with the operating system. If an
Activity class is not registered, then an attempt to run it will crash the app.
We could create an Activity class simply by creating a class that extends Activity
(or AppCompatActivity) in a new .java file. However, we would then have to
add the preceding code ourselves. Also, by using the new Activity wizard, we got
a layout XML file (activity_settings.xml) automatically generated for us.

Telegram Channel @IRFaraExam

442 Data Persistence and Sharing

Designing the settings screen layout
We will quickly build a UI for our settings screen, and the following steps and figure
should make this straightforward:

1. Open the activity_settings.xml file, switch to the Design tab, and we will
quickly lay out our settings screen. Use this next figure as a guide while following
the rest of the steps:

Figure 17.1 – Designing the settings screen

2. Drag and drop a Switch widget onto the center top of the layout. I stretched mine
by dragging the edges to make it larger.

3. Add an id attribute of switch1 (if it isn't already by default) so we can interact
with it using Java code from SettingsActivity.java.

4. Use the constraint handles to fix the position of the switch or click the Infer
Constraints button to fix it automatically.

We now have a simple new layout for our settings screen and the id property is in place,
ready for when we wire it up with our Java code later in the chapter.

Enabling the user to switch to the settings screen
We already know how to switch to SettingsActivity. Also, as we won't be passing
any data to it or from it, we can get this working with just two lines of Java code.

You might have noticed in the action bar of our app that there is a menu icon. It is a
default part of the Basic Activity template that we used when we created the project. It is
indicated in the following figure:

Telegram Channel @IRFaraExam

Adding a settings page to Note to Self 443

Figure 17.2 – Menu icon

If you tap it, there is already a menu option in there for Settings, provided by default
when we first created the app. This is what you will see when you tap the menu icon:

Figure 17.3 – Settings option

All we need to do is place our code to switch to the SettingsActivity class within
the onOptionsItemSelected method in the MainActivity class. Android Studio
even provided an if block by default for us to paste our code into, on the assumption that
we would one day want to add a settings screen. How thoughtful.

Switch to MainActivity.java in the editor window and find the following block of
code in the onOptionsItemSelected method:

//noinspection SimplifiableIfStatement

if (id == R.id.action_settings) {

 return true;

}

Add this code into the if block shown previously, just before the return true
statement:

Intent intent = new Intent(this, SettingsActivity.class);

startActivity(intent);

Telegram Channel @IRFaraExam

444 Data Persistence and Sharing

You will need to import the Intent class using your preferred technique to add this line
of code:

import android.content.Intent;

You can now run the app and visit the new settings screen by tapping the Settings menu
option. This screenshot shows the settings screen running on the emulator:

Figure 17.4 – Settings screen

To return from SettingsActivity to MainActivity, you can tap the back button
on the device.

Persisting data with SharedPreferences
In Android, there are a few ways to make data persist. By persist, I mean that if the user
quits the app, then when they come back to it, their data is still available. Which method
is the correct one to use is dependent upon the app and the type of data.

In this book, we will look at three ways to make data persist. For saving our users' settings,
we only need a simple method. After all, we just need to know whether they want the
decorative divider between each of the notes in the RecyclerView widget.

Let's look at how we can make our apps save and reload variables to the internal storage
of the device. We need to use the SharedPreferences class. SharedPreferences
is a class that provides access to data that can be accessed and edited by all Activity
classes of an app. Let's look at how we can use it:

// A SharedPreferences for reading data

SharedPreferences prefs;

Telegram Channel @IRFaraExam

Persisting data with SharedPreferences 445

// A SharedPreferences.Editor for writing data

SharedPreferences.Editor editor;

As with all objects, we need to initialize them before we can use them. We can initialize
the prefs object by using the getSharedPreferences method and passing in
a string that will be used to refer to all the data read and written using this object.
Typically, we could use the name of the app as the value for this string. In the next code,
MODE_PRIVATE means that any class, in this app only, can access it:

prefs = getSharedPreferences("My App", MODE_PRIVATE);

We then use our newly initialized prefs object to initialize our editor object by calling
the edit method:

editor = prefs.edit();

Let's say we wanted to save the user's name that we have in a string called username.
We can then write the data to the internal memory of the device like this:

editor.putString("username", username);

editor.commit();

The first argument used in the putString method is a label that can be used to refer to
the data; the second is the actual variable that holds the data we want to save. The second
line in the previous code initiates the saving process. So, we could write multiple variables
to disk like this:

editor.putString("username", username);

editor.putInt("age", age);

editor.putBoolean("newsletter-subscriber", subscribed);

// Save all the above data

editor.commit();

The previous code demonstrates that you can save other variable types, and it of course
assumes that the username, age, and subscribed variables have previously been
declared and then initialized with appropriate values.

Once editor.commit() has executed, the data is stored. We can quit the app, even
turn off the device, and the data will persist.

Telegram Channel @IRFaraExam

446 Data Persistence and Sharing

Reloading data with SharedPreferences
Let's see how we can reload our data the next time the app is run. This code will reload
the three values that the previous code saved. We could even declare our variables and
initialize them with the stored values:

String username =

 prefs.getString("username", "new user");

int age = prefs.getInt("age", -1);

boolean subscribed =

 prefs.getBoolean("newsletter-subscriber", false)

In the previous code, we load the data from disk using the method appropriate for the
data type and the same label we used to save the data in the first place. What is less clear
is the second argument to each of the method calls.

The getString, getInt, and getBoolean methods require a default value as the
second parameter. If there is no data stored with that label, it will then return the default
value.

We could then check for these default values in our code and go about trying to obtain the
real values. See here, for example:

if (age == -1){

 // Ask the user for his age

}

We now know enough to save our users' settings in the Note to Self app.

Making the Note to Self settings persist
We have already learned how to save data to the device's memory. As we implement
saving the users' settings, we will also see again how we handle Switch input and where
exactly the code we have just seen will go to make our app work the way we want it to.

Coding the SettingsActivity class
Most of the action will take place in the SettingsActivity.java file. So, click on the
appropriate tab and we will add the code a bit at a time.

Telegram Channel @IRFaraExam

Making the Note to Self settings persist 447

First, we need some member variables that will give us working SharedPreferences
and Editor instances. We also want a member variable to represent the user's settings
option: whether they want decorative dividers or not.

Add the following member variables to the SettingsActivity class just after the class
declaration:

private SharedPreferences mPrefs;

private SharedPreferences.Editor mEditor;

private boolean mShowDividers;

Import the SharedPreferences class:

import android.content.SharedPreferences;

Now in the onCreate method, add the code to initialize mPrefs and mEditor:

mPrefs = getSharedPreferences("Note to self", MODE_PRIVATE);

mEditor = mPrefs.edit();

Next, still in the onCreate method, let's get a reference to our Switch widget and
load up the saved data that represents our user's previous choice for whether to show
the dividers.

We get a reference to the switch in the same way that we did in Chapter 13, Anonymous
Classes – Bringing Android Widgets to Life. Notice the default value is true – to show the
dividers. We will also set the switch to either on or off as appropriate:

mShowDividers = mPrefs.getBoolean("dividers", true);

Switch switch1 = findViewById(R.id.switch1);

// Set the switch on or off as appropriate

switch1.setChecked(mShowDividers);

You will need to import the Switch class:

import android.widget.Switch;

Next, we create an anonymous class to listen for and handle changes to our Switch
widget.

Telegram Channel @IRFaraExam

448 Data Persistence and Sharing

When the isChecked variable is true, we use the prefs object to set the dividers
label and the mShowDividers variable to true; when it is not checked, we set them
both to false.

Add the following code to the onCreate method that we have just discussed:

switch1.setOnCheckedChangeListener(

 new CompoundButton.OnCheckedChangeListener() {

 public void onCheckedChanged(

 CompoundButton buttonView,

 boolean isChecked) {

 if(isChecked){

 mEditor.putBoolean(

 "dividers", true);

 mShowDividers = true;

 }else{

 mEditor.putBoolean(

 "dividers", false);

 mShowDividers = false;

 }

 }

 }

);

You will need to import the CompoundButton class:

import android.widget.CompoundButton;

You might have noticed that at no point in any of that code did we call the mEditor.
commit method to save the user's settings. We could have placed it after we detected
a change to the switch, but it is much simpler to put it where it is guaranteed to be called,
but only once.

Telegram Channel @IRFaraExam

Making the Note to Self settings persist 449

We will use our knowledge of the Activity lifecycle and override the onPause
method. When the user leaves the SettingsActivity screen either to go back to
MainActivity or to quit the app, the onPause method will be called by the operating
system and the settings will be saved. Add this code to override the onPause method
and save the user's settings. Add the code just before the closing curly brace of the
SettingsActivity class:

@Override

protected void onPause() {

 super.onPause();

 // Save the settings here

 mEditor.commit();

}

Finally, we can add some code to the MainActivity class to load the settings when the
app starts or when the user switches back from the settings screen to the main screen.

Coding the MainActivity class
Add this highlighted code to add some member variables after our NoteAdapter
instance is declared:

private List<Note> noteList = new ArrayList<>();

private RecyclerView recyclerView;

private NoteAdapter mAdapter;

private boolean mShowDividers;

private SharedPreferences mPrefs;

Import the SharedPreferences class:

import android.content.SharedPreferences;

Now we have a boolean member to decide whether to show the dividers and
a SharedPreferences instance to read the settings from disk.

Now we will override the onResume method to initialize our mPrefs variable and load
the settings into the mShowDividers variable.

Telegram Channel @IRFaraExam

450 Data Persistence and Sharing

Add the overridden onResume method as shown next to the MainActivity class:

@Override

protected void onResume(){

 super.onResume();

 mPrefs = getSharedPreferences(

 "Note to self", MODE_PRIVATE);

 mShowDividers = mPrefs.getBoolean(

 "dividers", true);

}

The user is now able to choose their settings. The app will both save and reload them as
necessary, but we need to make the MainActivity class respond to the user's choice.

Find this code in the onCreate method and delete it:

// Add a neat dividing line between items in the list

recyclerView.addItemDecoration(

 new DividerItemDecoration(

 this, LinearLayoutManager.VERTICAL));

The previous code is what sets the dividers between each note in the list. Add this new
code to the onResume method, which is the same line of code surrounded by an if
statement, to selectively use dividers only when mShowDividers is true. Add the code
after the previous code in the onResume method:

if(mShowDividers) {

 // Add a neat dividing line between list items

 recyclerView.addItemDecoration(

 new DividerItemDecoration(

 this, LinearLayoutManager.VERTICAL));

}else{

 // check there are some dividers

// or the app will crash

if(recyclerView.getItemDecorationCount() > 0) {

 recyclerView.removeItemDecorationAt(0);

Telegram Channel @IRFaraExam

More advanced persistence 451

}

}

Run the app and notice that the dividers are gone; go to the settings screen, switch on the
dividers, and return to the main screen (with the back button) – and behold: there are
now separators. This next figure shows the list with and without separators side by side
to illustrate that the code we have added works and the settings persist between the two
Activity classes:

Figure 17.5 – List with and without separators

Be sure to try quitting the app and restarting to verify that the setting is saved to disk.
You can even turn the emulator off and back on again and the setting will persist.

Now we have a neat settings screen and we can permanently save the user's choice of
decorative preference. Of course, the big missing link regarding persistence is that the
user's fundamental data, their notes, still does not persist.

More advanced persistence
Let's think about what we need to do. We want to save a bunch of notes to the internal
storage. Being more specific, we want to store a selection of strings and related Boolean
values. These strings and Boolean values represent the user's note title, the note's text, and
whether it is a to-do, important, or an idea.

Telegram Channel @IRFaraExam

452 Data Persistence and Sharing

Given what we already know about the SharedPreferences class, at first glance this
might not seem especially challenging – until we dig a little deeper into our requirements.
What if the user loves our app and ends up with 100 notes? We would need 100 identifiers
for key-value pairs. Not impossible, but starting to get awkward.

Now consider that we want to enhance the app and give the user the ability to add
dates to them. Android has a Date class that is perfect for this. It would be reasonably
straightforward to then add neat features such as reminders to our app. But when it comes
to saving data, suddenly, things start to get complicated.

How would we store a date using SharedPreferences? It wasn't designed for this. We
could convert it to a string when we save it and convert it back again when we load it, but
this is far from simple.

And as our app grows in features and our users get more and more notes, the whole
persistence thing becomes a nightmare. What we need is a way to save and load objects,
actual Java objects. If we can simply save and load objects, including their internal data
(strings, Booleans, dates, or anything else), our apps can have any kind of data we can
think of to suit our users.

The process of converting data objects into bits and bytes to store on a disk is called
serialization; the reverse process is called de-serialization. Serialization on its own
is a vast topic and far from straightforward. Fortunately, as we are coming to expect,
there is a class to handle most of the complexity for us.

What is JSON?
JSON stands for JavaScript Object Notation and it is widely used in fields beyond
Android and the Java language. It is perhaps most frequently used to send data between
web applications and servers.

Fortunately, there are JSON classes available for Android that almost entirely hide the
complexity of the serialization process. By learning about a few more Java concepts, we
can quickly begin to use these classes and start writing entire Java objects to the device
storage rather than worrying ourselves about what primitive types make up the objects.

The JSON classes when compared with other classes we have seen so far undertake
operations that have a higher-than-normal probability of failure that is beyond their
control. To find out why this is so and what can be done about it, let's look at Java
exceptions.

Telegram Channel @IRFaraExam

More advanced persistence 453

Java exceptions – try, catch, and finally
All this talk of JSON requires us to learn a new Java concept: exceptions. When we write
a class that performs operations that have a possibility of failure, especially for reasons
beyond our control, it is advisable to make this plain in our code so that anyone using our
class is prepared for the possibility.

Saving and loading data is one such scenario where failure is possible beyond our
control. Think about trying to load data when the SD card has been removed or has been
corrupted. Another instance where code might fail is perhaps when we write code that
relies on a network connection – what if the user goes offline partway through a data
transfer?

Java exceptions are the solution and JSON classes use them, so it is a good time to learn
about them.

When we write a class that uses code with a chance of failure, we can prepare the users of
our class by using exceptions with try, catch, and finally.

We can write methods in our classes using the throws Java keyword at the end of the
signature – a bit like this perhaps:

public void somePrecariousMethod() throws someException{

 // Risky code goes here

}

Now any code that uses the somePrecariousMethod method will need to handle the
exception. The way that we handle exceptions is by wrapping code in try and catch
blocks – perhaps like this:

try{

 ...

 somePrecariousMethod();

 ...

}catch(someException e){

 Log.e("Exception:" + e, "Uh ohh")

 // Take action if possible

}

Telegram Channel @IRFaraExam

454 Data Persistence and Sharing

Optionally, we can also add a finally block if we want to take any further action after
the try and catch blocks:

finally{

 // More action here

}

In our Note to Self app, we will take the minimum amount of action to handle exceptions
and simply output an error to logcat, but you could do things such as notify the user, retry
the operation, or put into action some clever back-up plan.

Backing up user data in Note to Self
So, with our newfound insight into exceptions, let's modify our Note to Self code, and
then we can be introduced to the JSONObject and JSONException classes.

First, let's make some minor modifications to our Note class. Add some more members
that will act as the key in a key-value pair for each aspect of our Note class:

private static final String JSON_TITLE = "title";

private static final String JSON_DESCRIPTION = "description";

private static final String JSON_IDEA = "idea";

private static final String JSON_TODO = "todo";

private static final String JSON_IMPORTANT = "important";

Now add a constructor and an empty default constructor that receives JSONObject
and throws JSONException. The body of the constructor initializes each of the
members that defines the properties of a single Note object by calling the getString
or getBoolean method of JSONObject, passing in the key as an argument. We also
provide an empty default constructor, which is required now that we are providing our
specialized constructor:

// Constructor

// Only used when new is called with a JSONObject

public Note(JSONObject jo) throws JSONException {

 mTitle = jo.getString(JSON_TITLE);

 mDescription = jo.getString(JSON_DESCRIPTION);

 mIdea = jo.getBoolean(JSON_IDEA);

Telegram Channel @IRFaraExam

Backing up user data in Note to Self 455

 mTodo = jo.getBoolean(JSON_TODO);

 mImportant = jo.getBoolean(JSON_IMPORTANT);

}

// Now we must provide an empty default constructor

// for when we create a Note as we provide a

// specialized constructor.

public Note (){

}

You will need to import the JSONException and JSONObject classes:

import org.json.JSONException;

import org.json.JSONObject;

The next code we will see will load the member variables of a given Note object into
JSONObject. This is where the Note object's members are packed up as a single
JSONObject ready for when the actual serialization takes place.

All we need to do is call the put method with the appropriate key and the matching
member variable. This method returns JSONObject (we will see where in a minute) and
it also throws a JSONObject exception. Add the code we have just discussed:

public JSONObject convertToJSON() throws JSONException{

 JSONObject jo = new JSONObject();

 jo.put(JSON_TITLE, mTitle);

 jo.put(JSON_DESCRIPTION, mDescription);

 jo.put(JSON_IDEA, mIdea);

 jo.put(JSON_TODO, mTodo);

 jo.put(JSON_IMPORTANT, mImportant);

 return jo;

}

Telegram Channel @IRFaraExam

456 Data Persistence and Sharing

Now let's make a JSONSerializer class that will perform the actual serialization and
deserialization. Create a new class and call it JSONSerializer.

Let's split it up into a few chunks and talk about what we are doing as we code each chunk.

First, the declaration and a couple of member variables: a string to hold the filename
where the data will be saved and a Context object that is necessary in Android to write
data to a file. Add the highlighted code inside the class you just created:

public class JSONSerializer {

 private String mFilename;

 private Context mContext;

 // All the rest of the code for the class goes here

}// End of class

Note
You will need to import the Context class:

import android.content.Context;

The previous code shows that the closing curly brace of the class and all the code that
follows for this class should be entered inside of it. Here is the very straightforward
constructor where we initialize the two member variables that are passed in as parameters.
Add the constructor for JSONSerializer:

public JSONSerializer(String fn, Context con){

 mFilename = fn;

 mContext = con;

}

Now we can start coding the real guts of the class. The save method is next. It first creates
a JSONArray object, which is a specialized ArrayList class for handling JSON objects.

Next, the code uses an enhanced for loop to go through all the Note objects in the
notes array list and convert them to JSON objects using the convertToJSON
method from the Note class, which we added previously. Then, we load these converted
JSONObject instances into jArray.

Telegram Channel @IRFaraExam

Backing up user data in Note to Self 457

Next, the code uses a Writer instance and an OutputStream instance combined
to write the data to an actual file. Notice the OutputStream instance needed the
mContext object to be initialized. Add the code we have just discussed:

public void save(List<Note> notes)

 throws IOException, JSONException{

 // Make an array in JSON format

 JSONArray jArray = new JSONArray();

 // And load it with the notes

 for (Note n : notes)

 jArray.put(n.convertToJSON());

 // Now write it to the private disk space of our app

 Writer writer = null;

 try {

 OutputStream out =

 mContext.openFileOutput(mFilename,

 mContext.MODE_PRIVATE);

 writer = new OutputStreamWriter(out);

 writer.write(jArray.toString());

 } finally {

 if (writer != null) {

 writer.close();

 }

 }

}

You will need to add the following import statements for these new classes:

import org.json.JSONArray;

import org.json.JSONException;

import java.io.IOException;

import java.io.OutputStream;

import java.io.OutputStreamWriter;

Telegram Channel @IRFaraExam

458 Data Persistence and Sharing

import java.io.Writer;

import java.util.List;

Now for the de-serialization – loading the data. This time, as we might expect, the method
receives no parameters but instead returns an ArrayList instance. An InputStream
instance is created using mContext.openFileInput and our file containing all our
data is opened.

We use a while loop to append all the data to a string and use our new Note
constructor, which extracts JSON data to regular primitive variables to unpack each
JSONObject into a Note object and add it to the ArrayList that is returned to the
calling code:

public ArrayList<Note> load() throws IOException,
JSONException{

 ArrayList<Note> noteList = new ArrayList<Note>();

 BufferedReader reader = null;

 try {

 InputStream in =

 mContext.openFileInput(mFilename);

 reader = new BufferedReader(new

 InputStreamReader(in));

 StringBuilder jsonString = new StringBuilder();

 String line = null;

 while ((line = reader.readLine()) != null) {

 jsonString.append(line);

 }

 JSONArray jArray = (JSONArray) new

 JSONTokener(jsonString.toString()

).nextValue();

 for (int i = 0; i < jArray.length(); i++) {

 noteList.add(new

Telegram Channel @IRFaraExam

Backing up user data in Note to Self 459

 Note(jArray.getJSONObject(i)));

 }

 } catch (FileNotFoundException e) {

 // we will ignore this one, since it happens

 // when we start fresh. You could add a log here.

 } finally {// This will always run

 if (reader != null)

 reader.close();

 }

 return noteList;

}

You will need to add these imports:

import org.json.JSONTokener;

import java.io.BufferedReader;

import java.io.FileNotFoundException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.util.ArrayList;

Now all we need to do is put our new class to work in the MainActivity class. Add
a new member after the MainActivity declaration as highlighted next. Also, remove
the initialization of noteList to leave just the declaration as we will now initialize it
with some new code in the onCreate method. I have commented out the line you need
to delete:

public class MainActivity extends AppCompatActivity {

 private JSONSerializer mSerializer;

 //private List<Note> noteList = new ArrayList<>();

 private List<Note> noteList;

Telegram Channel @IRFaraExam

460 Data Persistence and Sharing

Now, in the onCreate method, we initialize mSerializer by calling the
JSONSerializer constructor with the filename and getApplicationContext(),
which returns the Context instance of the application and is required. We can then use
the JSONSerializer load method to load any saved data. Add this new, highlighted
code after the code that handles the floating action button. This new code must come
before we handle the RecyclerView instance:

…

FloatingActionButton fab =

 (FloatingActionButton) findViewById(R.id.fab);

fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 DialogNewNote dialog = new DialogNewNote();

 dialog.show(getSupportFragmentManager(), "");

 }

});

 mSerializer = new JSONSerializer("NoteToSelf.json",

 getApplicationContext());

 try {

 noteList = mSerializer.load();

 } catch (Exception e) {

 noteList = new ArrayList<Note>();

 Log.e("Error loading notes: ", "", e);

 }

 recyclerView =

 findViewById(R.id.recyclerView);

mAdapter = new NoteAdapter(this, noteList);

 …

Telegram Channel @IRFaraExam

Backing up user data in Note to Self 461

Note
You need to import the Log class at this point:

import android.util.Log;

I have shown a great deal of context in the previous code because its
positioning is essential for it to work. If you are having any problems getting
this to run, be sure to compare it to the code in the download bundle in the
Chapter 17/java folder.

Now we can add a new method to our MainActivity class so that that we can call
it to save all our user's data. All this new method does is call the save method of the
JSONSerializer class, passing in the required list of Note objects:

public void saveNotes(){

 try{

 mSerializer.save(noteList);

 }catch(Exception e){

 Log.e("Error Saving Notes","", e);

 }

}

Now, just as we did when saving our user's settings, we will override the onPause
method to save our user's note data. Be sure to add this code in the MainActivity class:

@Override

protected void onPause(){

 super.onPause();

 saveNotes();

}

That's it. We can now run the app and add as many notes as we like. ArrayList will
store them all in our running app, our RecyclerAdapter will manage displaying them
in RecyclerView, and now JSON will take care of loading them to disk and loading
them back as well.

Telegram Channel @IRFaraExam

462 Data Persistence and Sharing

Frequently asked questions
1. I didn't understand everything in this chapter – am I not cut out to be

a programmer?

This chapter introduced many new classes, concepts, and methods. If your
head is aching a little, that is to be expected. If some of the detail is unclear,
don't let that hold you back. Proceed with the next couple of chapters (they are
much more straightforward), then revisit this one and examine the completed
code files.

2. So, how does serialization work in detail?

Serialization really is a vast topic. It is possible to write apps your whole life and
never really need to understand it. It is the type of topic that might be the subject
of a computer science degree. If you are curious to know more, have a look at this
article: https://en.wikipedia.org/wiki/Serialization.

Summary
At this point in our journey through the Android API, it is worth taking stock of what
we know. We can lay out our own UI designs and choose from a wide and diverse range
of widgets to allow the user to interact with the UI. We can create multiple screens as well
as pop-up dialogs and we can capture comprehensive user data. Furthermore, we can now
make this data persist.

Certainly, there is a lot more to the Android API still to learn, even beyond what this
book will teach you, but the point is that we know enough now to plan and implement
a working app. You could just get started on your own app right now.

If you have the urge to start your own project right away, then my advice is to go ahead
and do it. Don't wait until you consider yourself an "expert" or more ready. Reading this
book and, more importantly, implementing the apps will make you a better Android
programmer, but nothing will teach you faster than designing and implementing your
own app! It is perfectly possible to read through this book and work on your own
project(s) simultaneously.

In the next chapter, we will add the finishing touches to this app by making it multilingual.
This is quite quick and easy.

Telegram Channel @IRFaraExam

https://en.wikipedia.org/wiki/Serialization

18
Localization

This chapter is quick and simple and what we will learn to do here can make your app
accessible to millions more potential users. We will see how to add additional languages.
We will also see how adding text the correct way via string resources benefits us when it
comes to adding multiple languages.

In this chapter, we will cover the following:

• Making the Note to Self app multilingual by adding the Spanish and German
languages

• Learning how to use string resources more fully

Let's get started.

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2018.

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2018
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2018
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2018

464 Localization

Making the Note to Self app accessible for
Spanish and German speakers
First, we need to add some folders to our project – one for each new language. The text is
classed as a resource and consequently needs to go in the res folder. Follow these steps to
add Spanish and German support to the project.

Important Note
While the source files for this project are provided in the Chapter 18
folder, they are just for reference. You need to go through the processes
described next to achieve multilingual functionality.

Adding Spanish language support
Follow the next steps to add Spanish language support:

1. Right-click on the res folder, and then select New | Android resource directory.
In the Directory name field, type values-es.

2. Left-click OK.

3. Now we need to add a file in which we can place all our Spanish translations.
Right-click on res, and then select New | Android resource file and type
strings.xml in the File name field. Type values-es in the Directory
name field.

4. Left-click OK.

At this stage, we have a new folder for Spanish translations with a strings.xml file
inside for the string resources. Let's do the same for the German language.

Adding German language support
Follow these steps to add German language support:

1. Right-click on the res folder, and then select New | Android resource directory.
In the Directory name field, type values-de.

2. Left-click OK.

3. Now we need to add a file in which we can place all our German translations. Right-
click on res, and then select New | Android resource file and type strings.xml
in the File name field. Type values-de in the Directory name field.

4. Left-click OK.

Telegram Channel @IRFaraExam

Making the Note to Self app accessible for Spanish and German speakers 465

This is what the strings.xml folder looks like. You are probably wondering where the
strings.xml folder came from as it doesn't correspond to the structure we seemed to
be creating in the previous steps. Android Studio is helping us (apparently) to organize
our files and folders as is required by the Android operating system. You can, however,
see the Spanish and German files indicated by their country-specific extensions, es and
de, respectively:

Figure 18.1 – strings.xml folder

Now we can add the translations to the files.

Adding the string resources
As we know, the strings.xml file contains the words that the app will display – words
such as "important," "to do," "idea," and more. By having a strings.xml file for each
language we want to support, we can then leave Android to choose the appropriate text
depending on the language settings of the user.

As you go through the following, notice that although we place the translation of whatever
word we are translating as the value, the name attribute remains the same. If you think
about it, this is logical because it is the name attribute that we refer to in our layout files.

Telegram Channel @IRFaraExam

466 Localization

Let's provide the translations, see what we have achieved, and then come back and discuss
what we will do about the text in our Java code. The simplest way to achieve this code is to
copy and paste the code from the original strings.xml file and then edit the values of
each of the name attributes:

1. Open the strings.xml file by double-clicking it. Be sure to choose the one next
to the (es) postfix. Edit the file to look like this:

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">Nota a sí mismo</string>

<string name="action_settings">Configuración</string>

<string name="action_add">add</string>

<string name="title_hint">Título</string>

<string name="description_hint">Descripción</string>

<string name="idea_text">Idea</string>

<string name="important_text">Importante</string>

<string name="todo_text">Que hacer</string>

<string name="cancel_button">Cancelar</string>

<string name="ok_button">Vale</string>

<string name="settings_title">Configuración</string>

</resources>

2. Open the strings.xml file by double-clicking it. Be sure to choose the one next
to the (de) postfix. Edit the file to look like this:

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">Hinweis auf selbst</string>

<string name="action_settings">Einstellungen</string>

<string name="action_add">add</string>

<string name="title_hint">Titel</string>

<string name="description_hint">Beschreibung</string>

<string name="idea_text">Idee</string>

<string name="important_text">Wichtig</string>

Telegram Channel @IRFaraExam

Making the Note to Self app accessible for Spanish and German speakers 467

<string name="todo_text">zu tun</string>

<string name="cancel_button">Abbrechen</string>

<string name="ok_button">Okay</string>

<string name="settings_title">Einstellungen</string>

</resources>

Note
If you don't provide all the string resources in the extra (Spanish and German)
strings.xml files, then the missing resources will be taken from the
default file.

What we have done is provided two translations. Android knows which translation is
for which language because of the folders they are placed in. Furthermore, we have used
a string identifier (the name attribute) to refer to the translations. Look back at the
previous code and you will see that the same identifier is used for both translations as well
as in the original strings.xml file.

You can even localize to different versions of a language, for example, US or UK English.
The complete list of codes can be found here: http://stackoverflow.com/
questions/7973023/what-is-the-list-of-supported-languages-
locales-on-android. You can even localize resources such as images and sound.
Find out more about this here: http://developer.android.com/guide/
topics/resources/localization.html.

The translations were copy and pasted from Google Translate, so it is very likely that
some of the translations are far from correct. Doing translation on the cheap like this
can be an effective way to get an app with a basic set of string resources onto the devices
of users who speak different languages to yourself. Once you start needing any depth of
translation, perhaps in the case of the lines of a story-driven game or a social media app,
you will certainly benefit from having the translation done by a human professional.

The purpose of this exercise is to show how Android works, not how to translate.

Note
My sincere apologies to any Spanish or German speakers who can likely see the
limitations of the translations provided here.

Now that we have the translations, we can see them in action, up to a point.

Telegram Channel @IRFaraExam

http://stackoverflow.com/questions/7973023/what-is-the-list-of-supported-languages-locales-on-android
http://stackoverflow.com/questions/7973023/what-is-the-list-of-supported-languages-locales-on-android
http://stackoverflow.com/questions/7973023/what-is-the-list-of-supported-languages-locales-on-android
http://developer.android.com/guide/topics/resources/localization.html
http://developer.android.com/guide/topics/resources/localization.html

468 Localization

Running Note to Self in German or Spanish
Run the app to see whether it is working as normal. Now we can change the localization
settings to see it in Spanish. Different devices vary slightly in how to do this, but the Pixel
3 emulator options are as follows:

1. Choose Settings | System | Languages and input | Add a language. Next, select
Español and you will then be able to switch between Spanish and English from
a list.

2. Left-click and drag Español (Estados Unidos) so that it is at the top of the list.

Congratulations, your emulator is now defaulting to Spanish. Once you are done with this
chapter, you can drag your preferred language back to the top of the list.

Now you can run the app in the usual way. Here are some screenshots of the app running
in Spanish. I have photoshopped a couple of screenshots side by side to show different
screens of the Note to Self app:

Figure 18.2 – The app running in Spanish

Telegram Channel @IRFaraExam

Running Note to Self in German or Spanish 469

In the screenshots, you can clearly see that our app is translated to Spanish, mainly.
Obviously, the text that the user enters will be in whatever language they speak; that is not
a flaw of our app. However, look at the screenshots closely and notice that I have pointed
out a couple of places where the text is still in English. We still have some untranslated text
in each of our dialog windows.

This is because the text is contained within our Java code directly. As we have seen, it is
easy to use string resources in multiple languages and then refer to them in our layouts,
but how do we refer to string resources from our Java code?

Making the translations work in Java code
The first thing to do is create the resources in each of the three strings.xml files. Here
are the two resources that need adding to the three different files.

In strings.xml (without any country postfix), add these two resources within the
<resources></resources> tags:

<string name="add_new_note">Add a new note</string>

<string name="your_note">Your note</string>

In strings.xml with the (es) postfix, add these two resources within the
<resources></resources> tags:

<string name="add_new_note">Agregar una nueva nota</string>

<string name="your_note">Su nota</string>

In strings.xml with the (de) postfix, add these two resources within the
<resources></resources> tags:

<string name="add_new_note">Eine neue Note hinzufügen</string>

<string name="your_note">Ihre Notiz</string>

Next, we need to edit some Java code to refer to a resource instead of a hardcoded string.

Open the DialogNewNote.java file and find this line of code:

builder.setView(dialogView).setMessage("Add a new note");

Edit it as shown next to use the string resource we just added instead of the hardcoded text:

builder.setView(dialogView).setMessage(getResources().

getString(R.string.add_new_note));

Telegram Channel @IRFaraExam

470 Localization

The new code uses the chained getResources.getString methods to replace
the previously hardcoded "Add a new note" text. Look closely and you will see that
the argument sent to the getString method is the R.string.add_new_note
string identifier.

The R.string code refers to the string resources in the res folder and add_new_note
is our identifier. Android will then be able to decide which version (default, Spanish, or
German) is appropriate based on the locale of the device on which the app is running.

We have one more hardcoded string to change.

Open the DialogShowNote.java file and find this line of code:

builder.setView(dialogView).setMessage("Your Note");

Edit it as shown next to use the string resource we just added instead of the hardcoded text:

builder.setView(dialogView).setMessage(getResources().

getString(R.string.your_note));

The new code again uses the chained getResources.getString methods to replace
the previously hardcoded "Your note" text. Again, the argument sent to getString
is the string identifier, in this case, R.string.your_note.

Android can now decide which version (default, Spanish, or German) is appropriate based
upon the locale of the device on which the app is running. The next screenshot shows that
the New note screen now has the opening text in the appropriate language:

Figure 18.3 – New note screen

Telegram Channel @IRFaraExam

Summary 471

You can add as many string resources as you like. As a reminder from Chapter 3,
Exploring Android Studio and the Project Structure, note that using string resources is the
recommended way to add any text to all projects. The tutorials in this book (apart from
Note to Self) will tend to hardcode them to make a more compact tutorial.

Summary
We have seen how we can cater to regions of the world that speak a different language to
us. We can now go global with our apps, as well as adding more flexible string resources
instead of hardcoding all the text.

In the next chapter, we will see how we can add cool animations to our apps using
animations and interpolators.

Telegram Channel @IRFaraExam

Telegram Channel @IRFaraExam

19
Animations and

Interpolations
Here, we will see how we can use the Animation class to make our UI a little less static
and a bit more interesting. As we have come to expect, the Android API will allow us to
do some quite advanced things with relatively straightforward code, and the Animation
class is no different.

This chapter can be approximately divided into these parts:

• An introduction to how animations in Android work and are implemented

• An introduction to a UI widget we haven't explored yet, SeekBar

• Creating a working animation app

First, let's explore how animations in Android work.

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2019.

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2019
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2019
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2019

474 Animations and Interpolations

Animations in Android
The normal way to create an animation in Android is through XML. We can write
XML animations and then load and play them in Java, on a specified UI widget. So, for
example, we can write an animation that fades in and out five times over 3 seconds, then
play that animation on an ImageView or any other widget. We can think of these XML
animations as a script as they define the type, order, and timing.

Let's explore some of the different properties we can assign to our animations, then how to
use them in our Java code, and finally, we can make a neat animations app to try it all out.

Designing cool animations in XML
We have learned that XML can be used to describe animations as well as UI layouts, but
let's find out exactly how. We can state the properties of an animation that describe the
starting and ending appearance of a widget. The XML can then be loaded by our Java code
by referencing the name of the XML file that contains it and turning it into a usable Java
object, again not unlike a UI layout.

Here is a quick look at some of the animation property pairs we can state to create
an animation. Straight after we have looked at some XML, we will see how to use it in
our Java.

Fading in and out
Alpha is the measure of transparency. So, by stating the starting fromAlpha and ending
toAlpha values, we can fade items in and out. A value of 0.0 is invisible and 1.0 is an
object's normal appearance. Steadily moving between the two makes a fading-in effect:

<alpha

 android:fromAlpha="0.0"

 android:toAlpha="1.0" />

Moving
We can move an object within our UI by using a similar technique. fromXDelta
and toXDelta can have their values set as a percentage of the size of the object
being animated.

Telegram Channel @IRFaraExam

Animations in Android 475

The following code moves an object from left to right at a distance equal to the width of
the object itself:

<translate

 android:fromXDelta="-100%"

 android:toXDelta="0%"/>

In addition, there are the fromYDelta and toYDelta properties for animating up
and down.

Scaling or stretching
fromXScale and toXScale will increase or decrease the scale of an object. As an
example, the following code will change the object, running the animation from normal
size to invisible:

<scale

 android:fromXScale="1.0"

 android:fromYScale="0.0"/>

As another example, we could shrink the object to a tenth of its usual size
using android:fromYScale="0.1" or make it 10 times bigger using
android:fromYScale="10.0".

Controlling the duration
Of course, none of these animations would be especially interesting if they just instantly
arrived at their conclusion. To make our animations more interesting, we can, therefore,
set their duration in milliseconds. A millisecond is one-thousandth of a second. We
can also make the timing easier, especially in relation to other animations, by setting
startOffset, also in milliseconds.

The next code would begin an animation one-third of a second after we started it and it
would take two-thirds of a second to complete:

 android:duration="666"

 android:startOffset="333"

Telegram Channel @IRFaraExam

476 Animations and Interpolations

Rotating animations
If you want to spin something around, just use fromDegrees and toDegrees. This
next code, probably predictably, will spin a widget around in a complete circle because,
of course, there are 360 degrees in a circle:

 <rotate android:fromDegrees="360"

 android:toDegrees="0"

 />

Repeating animations
Repetition might be important in some animations, perhaps a wobble or shake effect,
so we can add a repeatCount property. In addition, we can specify how the animation
is repeated by setting repeatMode.

The following code would repeat an animation 10 times, each time reversing the direction
of the animation. The repeatMode property is relative to the current state of the
animation. What this means is that if you, for example, rotated a button from 0 to 360
degrees, the second part of the animation (the first repeat) would rotate the other way
from 360 back to 0. The third part of the animation (the second repeat) would again
reverse and rotate from 0 to 360:

 android:repeatMode="reverse"

 android:repeatCount="10"

Using the 360-degree spin example, the preceding code would spin a widget through
360 degrees to the right, then back 360 degrees to the left, five times. This is 10 repeats,
reversing after each.

Combining an animation's properties with set
To combine groups of these effects, we need to use set. This code shows how we can
combine all the previous code snippets we have just seen into an actual XML animation
that will compile:

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/android"

 ...All our animations go here

</set>

Telegram Channel @IRFaraExam

Animations in Android 477

We still haven't seen any Java with which to bring these animations to life. Let's fix
that now.

Instantiating animations and controlling them with
Java code
This next snippet of Java code shows how we would declare an object of the Animation
type, initialize it with an animation contained in an XML file named fade_in.xml, and
start the animation on an ImageView widget. Soon we will do this in a project and see
where to put the XML animations as well:

// Declare an Animation object

Animation animFadeIn;

// Initialize it

animFadeIn = AnimationUtils.loadAnimation(

getApplicationContext(), R.anim.fade_in);

// Get an ImageView from the UI in the usual way

ImageView findViewById(R.id.imageView);

// Start the animation on the ImageView

imageView.startAnimation(animFadeIn);

We already have quite a powerful arsenal of animations and control features for things
such as timing. But the Android API gives us a little bit more than this as well.

More animation features
We can listen for the status of animations much as we can listen for clicks on a button.
We can also use interpolators to make our animations more life-like and pleasing.
Let's look at listeners first.

Listeners
If we implement the AnimationListener interface, we can indeed listen to the status
of animations by overriding the three methods that tell us when something has occurred.
We could then act based on these events.

Telegram Channel @IRFaraExam

478 Animations and Interpolations

OnAnimationEnd announces the end of an animation, onAnimationRepeat
is called each and every time an animation begins a repeat, and perhaps predictably,
onAnimationStart is called when an animation has started animating. This might
not be the same time as when startAnimation is called if startOffset is set in the
animation's XML:

@Override

public void onAnimationEnd(Animation animation) {

 // Take some action here

}

@Override

public void onAnimationRepeat(Animation animation) {

 // Take some action here

}

@Override

public void onAnimationStart(Animation animation) {

 // Take some action here

}

We will see how AnimationListener works in the animation demo app, as well as
putting another widget, SeekBar, into action.

Animation interpolators
If you can think back to high school, you might remember exciting lessons about
calculating acceleration. If we animate something at a constant speed, then at first glance,
things might seem OK. If we then compare the animation to another that uses gradual
acceleration, then the latter will almost certainly be more pleasing to watch.

It is possible that if we were not told that the only difference between the two animations
was that one used acceleration and the other didn't, we wouldn't be able to say why we
preferred it. Our brains are more receptive to things that conform to the norms of the
world around us. This is why adding a bit of real-world physics such as acceleration and
deceleration improves our animations.

Telegram Channel @IRFaraExam

Animation demo app – introducing SeekBar 479

The last thing we want to do, however, is start doing a bunch of mathematical calculations
just to slide a button onto the screen or spin some text in a circle.

This is where interpolators come in. They are animation modifiers that we can set in
a single line of code within our XML.

Some examples of interpolators are accelerate_interpolator and cycle_
interpolator:

android:interpolator="@android:anim/accelerate_
interpolator"android:interpolator="@android:anim/cycle_
interpolator"/>

We will put some interpolators, along with some XML animations and the related Java
code, into action next.

Note
You can learn more about interpolators and the Android Animation class
on the developer website here: http://developer.android.com/
guide/topics/resources/animation-resource.html.

Animation demo app – introducing SeekBar
That's enough theory, especially with something that should be visual. Let's build an
animation demo app that explores everything we have just discussed and a bit more.

This app involves small amounts of code in lots of different files. Therefore, I have tried
to make it plain which code is in which file, so you can keep track of what is going on.
This will make the Java we write for this app more understandable as well.

The app will demonstrate rotations, fades, translations, animation events, interpolations,
and controlling duration with a SeekBar widget. The best way to explain what the
SeekBar widget does is to build it and then watch it in action.

Laying out the animation demo
Create a new project called Animation Demo using the Empty Activity template,
leaving all the other settings at their defaults. As usual, should you wish to speed things
up by copy and pasting the layout, the Java code, or the animation XML, it can all be
found in the Chapter 19 folder.

Telegram Channel @IRFaraExam

http://developer.android.com/guide/topics/resources/animation-resource.html
http://developer.android.com/guide/topics/resources/animation-resource.html

480 Animations and Interpolations

Use the following reference screenshot of the finished layout to help guide you through
the next steps:

Figure 19.1 – Finished layout

Here is how to lay out the UI for this app:

1. Open activity_main.xml in the design view of the editor window.

2. Delete the default Hello world! TextView.

3. Add an ImageView widget to the top-center of the layout. Use the previous
reference screenshot to guide you. Use @mipmap/ic_launcher to show the
Android robot in the ImageView widget when prompted to do so by selecting
Project | ic_launcher in the pop-up Resources window.

4. Set the id property of the ImageView widget to imageView.

Directly below the ImageView widget, add a TextView widget. Set the id
attribute to textStatus. I made my TextView widget a little bigger by dragging
its edges and changed its textSize attribute to 40sp.

Telegram Channel @IRFaraExam

Animation demo app – introducing SeekBar 481

5. Now we will add a large selection of Button widgets to the layout. The exact
positioning is not vital but the exact id property values we add to them later in
the tutorial will be. Follow this next screenshot to lay out 12 buttons. Alter the
text attribute on each so that your buttons have the same text as those in the next
screenshot. The text attributes are detailed specifically in the next step in case the
screenshot isn't clear enough:

Figure 19.2 – text attributes

Note
To make the process of laying out the buttons quicker, lay them out just
approximately at first, then add the text attributes from the next step, and
then fine-tune the button positions to get a neat layout.

6. Add the text values as they are in the screenshot. Here are all the values from left to
right and top to bottom: FADE IN, FADE OUT, FADE IN OUT, ZOOM IN, ZOOM
OUT, LEFT RIGHT, RIGHT LEFT, TOP BOT, BOUNCE, FLASH, ROTATE LEFT,
and ROTATE RIGHT.

7. Add a SeekBar widget from the Widgets category of the palette, on the left, below
the buttons. Set the id property to seekBarSpeed and the max property to 5000.
This means that the seek bar will hold a value between 0 and 5000 as it is dragged
by the user from left to right. We will see how we can read and use this data soon.

Telegram Channel @IRFaraExam

482 Animations and Interpolations

8. We want to make the SeekBar widget much wider. To achieve this, you use
the exact same technique as with any widget; just drag the edges of the widget.
However, as the seek bar is quite small, it is hard to increase its size without
accidentally selecting the constraint handles. To overcome this problem, zoom
in to the design by holding the Ctrl key and rolling the middle mouse wheel
forward. You can then grab the edges of the seek bar without touching the
constraint handles. I have shown this in action in the next screenshot:

Figure 19.3 – Grab the edges of the seek bar

9. Now add a TextView widget just to the right of the SeekBar widget and set its
id property to textSeekerSpeed.

10. Tweak the positions to look like the reference image at the start of these steps,
and then click the Infer Constraints button to lock the positions. Of course, you
can do this manually if you want the practice.

11. Next add the following id properties to the buttons, as identified by the text
property that you have already set. If you are asked whether you want to Update
usages… as you enter these values, select Yes:

Telegram Channel @IRFaraExam

Animation demo app – introducing SeekBar 483

We will see how to use this newcomer to our UI (SeekBar) when we get to coding the
MainActivity class in a few sections time.

Coding the XML animations
Right-click on the res folder and select New | Android resource directory. Enter anim
in the Directory name field and left-click OK.

Now, right-click on the new anim directory and select New | Animation resource file.
In the File name field, type fade_in, and then left-click OK. Delete the entire contents
and add this code to create the animation:

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/android"

android:fillAfter="true" >

<alpha

android:fromAlpha="0.0"

android:interpolator="

@android:anim/accelerate_interpolator"

android:toAlpha="1.0" />

</set>

Right-click on the anim directory and select New | Animation resource file. In the
File name field, type fade_out, and then left-click OK. Delete the entire contents and
add this code to create the animation:

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/android"

android:fillAfter="true" >

 <alpha

 android:fromAlpha="1.0"

 android:interpolator="

 @android:anim/accelerate_interpolator"

 android:toAlpha="0.0" />

</set>

Telegram Channel @IRFaraExam

484 Animations and Interpolations

Right-click on the anim directory and select New | Animation resource file. In the
File name field, type fade_in_out, and then left-click OK. Delete the entire contents
and add this code to create the animation:

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/android"

 android:fillAfter="true" >

<alpha

android:fromAlpha="0.0"

android:interpolator="

@android:anim/accelerate_interpolator"

android:toAlpha="1.0" />

<alpha

android:fromAlpha="1.0"

android:interpolator="

@android:anim/accelerate_interpolator"

android:toAlpha="0.0" />

</set>

Right-click on the anim directory and select New | Animation resource file. In the
File name field, type zoom_in, and then left-click OK. Delete the entire contents and
add this code to create the animation:

<set xmlns:android="http://schemas.android.com/apk/res/android"

 android:fillAfter="true" >

 <scale

 android:fromXScale="1"

 android:fromYScale="1"

 android:pivotX="50%"

 android:pivotY="50%"

 android:toXScale="6"

 android:toYScale="6" >

Telegram Channel @IRFaraExam

Animation demo app – introducing SeekBar 485

 </scale>

</set>

Right-click on the anim directory and select New | Animation resource file. In the
File name field, type zoom_out, and then left-click OK. Delete the entire contents
and add this code to create the animation:

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/
android">

 <scale

 android:fromXScale="6"

 android:fromYScale="6"

 android:pivotX="50%"

 android:pivotY="50%"

 android:toXScale="1"

 android:toYScale="1" >

 </scale>

</set>

Right-click on the anim directory and select New | Animation resource file. In the
File name field, type left_right, and then left-click OK. Delete the entire contents
and add this code to create the animation:

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/
android">

 <translate

 android:fromXDelta="-500%"

 android:toXDelta="0%"/>

</set>

Telegram Channel @IRFaraExam

486 Animations and Interpolations

Right-click on the anim directory and select New | Animation resource file. In the
File name field, type right_left, and then left-click OK. Delete the entire contents
and add this code to create the animation:

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/
android">

 <translate

 android:fillAfter="false"

 android:fromXDelta="500%"

 android:toXDelta="0%"/>

</set>

Right-click on the anim directory and select New | Animation resource file. In the
File name field, type top_bot, and then left-click OK. Delete the entire contents and
add this code to create the animation:

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/
android">

 <translate

 android:fillAfter="false"

 android:fromYDelta="-100%"

 android:toYDelta="0%"/>

</set>

Right-click on the anim directory and select New | Animation resource file. In the
File name field, type flash, and then left-click OK. Delete the entire contents and
add this code to create the animation:

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/
android">

 <alpha android:fromAlpha="0.0"

 android:toAlpha="1.0"

 android:interpolator="

 @android:anim/accelerate_interpolator"

 android:repeatMode="reverse"

Telegram Channel @IRFaraExam

Animation demo app – introducing SeekBar 487

 android:repeatCount="10"/>

</set>

Right-click on the anim directory and select New | Animation resource file. In the
File name field, type bounce, and then left-click OK. Delete the entire contents and
add this code to create the animation:

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/android"

 android:fillAfter="true"

 android:interpolator="

 @android:anim/bounce_interpolator">

 <scale

 android:fromXScale="1.0"

 android:fromYScale="0.0"

 android:toXScale="1.0"

 android:toYScale="1.0" />

</set>

Right-click on the anim directory and select New | Animation resource file. In the
File name field, type rotate_left, and then left-click OK. Delete the entire contents
and add this code to create the animation. Here we see something new, pivotX="50%"
and pivotY="50%". This makes the rotate animation central on the widget that will be
animated. We can think of this as setting the pivot point of the animation:

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/
android">

 <rotate android:fromDegrees="360"

 android:toDegrees="0"

 android:pivotX="50%"

 android:pivotY="50%"

 android:interpolator="

 @android:anim/cycle_interpolator"/>

</set>

Telegram Channel @IRFaraExam

488 Animations and Interpolations

Right-click on the anim directory and select New | Animation resource file. In the
File name field, type rotate_right, and then left-click OK. Delete the entire contents
and add this code to create the animation:

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/
android">

 <rotate android:fromDegrees="0"

 android:toDegrees="360"

 android:pivotX="50%"

 android:pivotY="50%"

 android:interpolator="

 @android:anim/cycle_interpolator"/>

</set>

Now we can write the Java code to add our animations to our UI.

Wiring up the animation demo app with Java
Open the MainActivity.java file. Now, below the class declaration, we can declare
the following member variables for the animations:

Animation animFadeIn;

Animation animFadeOut;

Animation animFadeInOut;

Animation animZoomIn;

Animation animZoomOut;

Animation animLeftRight;

Animation animRightLeft;

Animation animTopBottom;

Animation animBounce;

Animation animFlash;

Animation animRotateLeft;

Animation animRotateRight;

Telegram Channel @IRFaraExam

Animation demo app – introducing SeekBar 489

Now add these member variables below for the UI widgets after the previous code:

ImageView imageView;

TextView textStatus;

Button btnFadeIn;

Button btnFadeOut;

Button btnFadeInOut;

Button zoomIn;

Button zoomOut;

Button leftRight;

Button rightLeft;

Button topBottom;

Button bounce;

Button flash;

Button rotateLeft;

Button rotateRight;

SeekBar seekBarSpeed;

TextView textSeekerSpeed;

Note
You will need to add the following import statements at this point:

import android.view.animation.Animation;

import android.widget.Button;

import android.widget.ImageView;

import android.widget.SeekBar;

import android.widget.TextView;

Next, we add an int member variable that will be used to track the current value/position
of the seek bar:

int seekSpeedProgress;

Telegram Channel @IRFaraExam

490 Animations and Interpolations

Now let's call two new methods from the onCreate method after the call to the
setContentView method:

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 loadAnimations();

 loadUI();

}

At this point, the two new lines of code will have errors until we implement the two
new methods.

Now we will implement the loadAnimations method. Although the code in this
method is quite extensive, it is also very straightforward. All we are doing is using the
static loadAnimation method of the AnimationUtils class to initialize each of
our Animation references with one of our XML animations. Notice also that for the
animFadeIn Animation reference, we also call setAnimationListener on it.
We will write the methods to listen for events shortly.

Add the loadAnimations method:

private void loadAnimations(){

 animFadeIn = AnimationUtils.loadAnimation(

 this, R.anim.fade_in);

 animFadeIn.setAnimationListener(this);

 animFadeOut = AnimationUtils.loadAnimation(

 this, R.anim.fade_out);

 animFadeInOut = AnimationUtils.loadAnimation(

 this, R.anim.fade_in_out);

 animZoomIn = AnimationUtils.loadAnimation(

 this, R.anim.zoom_in);

 animZoomOut = AnimationUtils.loadAnimation(

 this, R.anim.zoom_out);

 animLeftRight = AnimationUtils.loadAnimation(

Telegram Channel @IRFaraExam

Animation demo app – introducing SeekBar 491

 this, R.anim.left_right);

 animRightLeft = AnimationUtils.loadAnimation(

 this, R.anim.right_left);

 animTopBottom = AnimationUtils.loadAnimation(

 this, R.anim.top_bot);

 animBounce = AnimationUtils.loadAnimation(

 this, R.anim.bounce);

 animFlash = AnimationUtils.loadAnimation(

 this, R.anim.flash);

 animRotateLeft = AnimationUtils.loadAnimation(

 this, R.anim.rotate_left);

 animRotateRight = AnimationUtils.loadAnimation(

 this, R.anim.rotate_right);

}

Note
You will need to import one new class at this point:

import android.view.animation.AnimationUtils;

Implement the loadUI method in three sections. First, let's get a reference to the parts
of our XML layout in the usual way:

private void loadUI(){

 imageView = findViewById(R.id.imageView);

 textStatus = findViewById(R.id.textStatus);

 btnFadeIn = findViewById(R.id.btnFadeIn);

 btnFadeOut = findViewById(R.id.btnFadeOut);

 btnFadeInOut = findViewById(R.id.btnFadeInOut);

 zoomIn = findViewById(R.id.btnZoomIn);

 zoomOut = findViewById(R.id.btnZoomOut);

 leftRight = findViewById(R.id.btnLeftRight);

 rightLeft = findViewById(R.id.btnRightLeft);

Telegram Channel @IRFaraExam

492 Animations and Interpolations

 topBottom = findViewById(R.id.btnTopBottom);

 bounce = findViewById(R.id.btnBounce);

 flash = findViewById(R.id.btnFlash);

 rotateLeft = findViewById(R.id.btnRotateLeft);

 rotateRight = findViewById(R.id.btnRotateRight);

Now we will add a click listener for each button. Add this code immediately after the last
block within the loadUI method:

btnFadeIn.setOnClickListener(this);

btnFadeOut.setOnClickListener(this);

btnFadeInOut.setOnClickListener(this);

zoomIn.setOnClickListener(this);

zoomOut.setOnClickListener(this);

leftRight.setOnClickListener(this);

rightLeft.setOnClickListener(this);

topBottom.setOnClickListener(this);

bounce.setOnClickListener(this);

flash.setOnClickListener(this);

rotateLeft.setOnClickListener(this);

rotateRight.setOnClickListener(this);

Note
The code we just added creates errors in all the lines of code. We can ignore
them for now as we will fix them shortly and discuss what happened.

The third and last section of the loadUI method sets up an anonymous class to handle
the SeekBar widget. We could have added this as an interface to the MainActivity
class as we did with listening for button clicks and animation events, but with a single
SeekBar widget like this, it makes sense to handle it directly.

We will override three methods as is required by the interface when implementing
OnSeekBarChangeListener:

• A method that detects a change in the position of the seek bar called
onProgressChanged

• A method that detects the user starting to change the position called
onStartTrackingTouch

Telegram Channel @IRFaraExam

Animation demo app – introducing SeekBar 493

• A method that detects when the user has finished using the seek bar called
onStopTrackingTouch

To achieve our goals, we only need to add code to the onProgressChanged method
but we must still override them all.

All we do in the onProgressChanged method is assign the current value of the seek
bar to the seekSpeedProgress member variable so it can be accessed from elsewhere.
Then we use this value along with the maximum possible value of the SeekBar
widget, obtained by calling seekBarSpeed.getMax(), and output a message to the
textSeekerSpeed TextView widget.

Add the code we have just discussed into the loadUI method:

seekBarSpeed = findViewById(R.id.seekBarSpeed);

textSeekerSpeed = findViewById(R.id.textSeekerSpeed);

seekBarSpeed.setOnSeekBarChangeListener(new SeekBar.
OnSeekBarChangeListener() {

 @Override

 public void onProgressChanged(SeekBar seekBar,

 int value, boolean fromUser) {

 seekSpeedProgress = value;

 textSeekerSpeed.setText(""

 + seekSpeedProgress

 + " of "

 + seekBarSpeed.getMax());

 }

 @Override

 public void onStartTrackingTouch(SeekBar seekBar) {

 }

 @Override

 public void onStopTrackingTouch(SeekBar seekBar) {

Telegram Channel @IRFaraExam

494 Animations and Interpolations

 }

});

}

Now we need to alter the MainActivity class declaration to implement two interfaces.
In this app, we will be listening for clicks and animation events, so the two interfaces we
will be using are View.OnClickListener and Animation.AnimationListener.
Notice that to implement more than one interface, we simply separate the interfaces with
a comma.

Alter the MainActivity class declaration by adding the following highlighted code we
have just discussed:

public class MainActivity extends AppCompatActivity

 implements View.OnClickListener,

 Animation.AnimationListener {

At this stage, we can add and implement the required methods for those interfaces
– first, the following methods of AnimationListener: onAnimationEnd,
onAnimationRepeat, and onaAnimationStart. We only need to add a little
code to two of these methods. In onAnimationEnd, we set the text property of
textStatus to STOPPED, and in the onAnimationStart method, we set the text
property of textStatus to RUNNING. This will demonstrate our animation listeners are
indeed listening and working:

@Override

public void onAnimationEnd(Animation animation) {

 textStatus.setText("STOPPED");

}

@Override

public void onAnimationRepeat(Animation animation) {

}

Telegram Channel @IRFaraExam

Animation demo app – introducing SeekBar 495

@Override

public void onAnimationStart(Animation animation) {

 textStatus.setText("RUNNING");

}

The onClick method is quite long but not anything complicated. Each case that
handles each button from the UI simply sets the duration of the animation based on the
current position of the seek bar, sets up the animation so it can be listened to for events,
and then starts the animation.

Note
You will need to use your preferred technique to import the View class:

import android.view.View;

Add the onClick method we have just discussed, and we have then completed this
mini-app:

@Override

public void onClick(View v) {

switch(v.getId()){

 case R.id.btnFadeIn:

 animFadeIn.setDuration(seekSpeedProgress);

 animFadeIn.setAnimationListener(this);

 imageView.startAnimation(animFadeIn);

 break;

 case R.id.btnFadeOut:

 animFadeOut.setDuration(seekSpeedProgress);

 animFadeOut.setAnimationListener(this);

 imageView.startAnimation(animFadeOut);

 break;

Telegram Channel @IRFaraExam

496 Animations and Interpolations

 case R.id.btnFadeInOut:

 animFadeInOut.setDuration(seekSpeedProgress);

 animFadeInOut.setAnimationListener(this);

 imageView.startAnimation(animFadeInOut);

 break;

 case R.id.btnZoomIn:

 animZoomIn.setDuration(seekSpeedProgress);

 animZoomIn.setAnimationListener(this);

 imageView.startAnimation(animZoomIn);

 break;

 case R.id.btnZoomOut:

 animZoomOut.setDuration(seekSpeedProgress);

 animZoomOut.setAnimationListener(this);

 imageView.startAnimation(animZoomOut);

 break;

 case R.id.btnLeftRight:

 animLeftRight.setDuration(seekSpeedProgress);

 animLeftRight.setAnimationListener(this);

 imageView.startAnimation(animLeftRight);

 break;

 case R.id.btnRightLeft:

 animRightLeft.setDuration(seekSpeedProgress);

 animRightLeft.setAnimationListener(this);

 imageView.startAnimation(animRightLeft);

Telegram Channel @IRFaraExam

Animation demo app – introducing SeekBar 497

 break;

 case R.id.btnTopBottom:

 animTopBottom.setDuration(seekSpeedProgress);

 animTopBottom.setAnimationListener(this);

 imageView.startAnimation(animTopBottom);

 break;

 case R.id.btnBounce:

 /*

 Divide seekSpeedProgress by 10 because with

 the seekbar having a max value of 5000 it

 will make the animations range between

 almost instant and half a second

 5000 / 10 = 500 milliseconds

 */

 animBounce.setDuration(seekSpeedProgress / 10);

 animBounce.setAnimationListener(this);

 imageView.startAnimation(animBounce);

 break;

 case R.id.btnFlash:

 animFlash.setDuration(seekSpeedProgress / 10);

 animFlash.setAnimationListener(this);

 imageView.startAnimation(animFlash);

 break;

 case R.id.btnRotateLeft:

 animRotateLeft.setDuration(seekSpeedProgress);

 animRotateLeft.setAnimationListener(this);

 imageView.startAnimation(animRotateLeft);

Telegram Channel @IRFaraExam

498 Animations and Interpolations

 break;

 case R.id.btnRotateRight:

 animRotateRight.setDuration(seekSpeedProgress);

 animRotateRight.setAnimationListener(this);

 imageView.startAnimation(animRotateRight);

 break;

}

}

Now run the app. Move the seek bar to roughly the center so the animations run for
a reasonable amount of time, as shown in the next screenshot:

Figure 19.4 – Move the seek bar to roughly the center

Click the ZOOM IN button to see the effect, as shown in this next screenshot:

Figure 19.5 – ZOOM IN effect

Telegram Channel @IRFaraExam

Frequently asked questions 499

Notice how the text on the Android robot changes from RUNNING to STOPPED at the
appropriate time. Now click one of the ROTATE buttons to see this effect shown next:

Figure 19.6 – Rotate button

Most of the other animations don't do themselves justice in a screenshot, so be sure to try
them all out for yourself.

Frequently asked questions
1. I know how to animate widgets now but what about shapes or images that I

create myself?

An ImageView can hold any image you like. Just add the image to the drawable
folder and then set the appropriate src attribute on the ImageView widget. You
can then animate whatever image is being shown in the ImageView.

2. But what if I want more flexibility than this, such as for a drawing app or even
a game?

To implement this kind of functionality, we will need to learn about another general
computing concept (threads) as well as some more Android classes (such as Paint,
Canvas, and SurfaceView). We will learn how to draw anything from a single
pixel to shapes and then move them around the screen starting in the next chapter,
Chapter 20, Drawing Graphics.

Telegram Channel @IRFaraExam

500 Animations and Interpolations

Summary
Now we have another app-enhancing trick up our sleeves and we know that animations
in Android are quite straightforward. We can design an animation in XML and add the
file to the anim folder. After that, we can get a reference to the animation in XML with
an Animation object in our Java code.

We can then use a reference to a widget in our UI and set an animation to it using
setAnimation and passing in the Animation object. We commence the animation
by calling startAnimation on the reference to the widget.

We also saw that we can control the timing of animations, as well as listening for
animation events.

In the next chapter, we will learn about drawing graphics in Android. This will be the
start of several chapters on graphics, where we will build a kids'-style drawing app.

Telegram Channel @IRFaraExam

20
Drawing Graphics

This entire chapter will be about the Android Canvas class and some related classes,
including Paint, Color, and Bitmap. These classes combined bring great power when
it comes to drawing to the screen. Sometimes the default UI provided by the Android API
isn't what we need. If we want to make a drawing app, draw graphs, or perhaps create a
game, we need to take control of every pixel that the Android device has to offer.

In this chapter, we will cover the following:

• Understanding Canvas and related classes

• Writing a Canvas-based demo app

• Looking at the Android coordinate system so we know where to do our drawing

• Learning about drawing and manipulating bitmaps

• Writing a bitmap-based demo app

Let's draw!

Telegram Channel @IRFaraExam

502 Drawing Graphics

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2020.

Understanding the Canvas class
The Canvas class is part of the android.graphics package. In the next two chapters,
we will be using all the following import statements from the android.graphics
package and one more from the now-familiar View package. They give us access to some
powerful drawing methods from the Android API:

import android.graphics.Bitmap;

import android.graphics.Canvas;

import android.graphics.Color;

import android.graphics.Paint;

import android.widget.ImageView;

First, let's talk about Bitmap, Canvas, and ImageView, as highlighted in the
previous code.

Getting started drawing with Bitmap, Canvas,
and ImageView
As Android is designed to run all types of mobile apps, we can't immediately start typing
our drawing code and expect it to work. We need to do a bit of preparation (coding) to
consider the specific device our app is running on. It is true that some of this preparation
can be slightly counterintuitive, but we will go through it a step at a time.

Canvas and Bitmap
Depending on how you use the Canvas class, the term can be slightly misleading. While
the Canvas class is the class to which you draw your graphics, like a painting canvas, you
still need a surface to transpose the canvas to.

The surface, in this case (and in our first two demo apps), will be from the Bitmap class.
We can think of it like this: we get a Canvas object and a Bitmap object and then set the
Bitmap object as the part of the Canvas object to draw upon.

This is slightly counterintuitive if you take the word canvas in its literal sense but once it is
all set up, we can forget about it and concentrate on the graphics we want to draw.

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2020
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2020
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2020

Understanding the Canvas class 503

Note
The Canvas class supplies the ability to draw. It has all the methods for doing
things such as drawing shapes, text, lines, and image files (including other
bitmaps), and even plotting individual pixels.

The Bitmap class is used by the Canvas class and is the surface that gets
drawn upon. You can think of the Bitmap instance as being inside a picture
frame on the Canvas instance.

Paint
In addition to the Canvas and Bitmap classes, we will be using the Paint class. This
is much more easily understood. Paint is the class used to configure specific properties
such as the color that we will draw on Bitmap (within Canvas).

There is still another piece of the puzzle to cover before we can start drawing.

ImageView and Activity
The ImageView class is the class that the Activity class will use to display output to
the user. The reason for this third layer of abstraction is that as we have seen throughout
the book, the Activity class needs to pass a View to the setContentView method to
display something to the user. Throughout the book so far, this has been a layout that we
created in the visual designer or in XML code.

This time, we don't want a regular UI; we want to draw lines, pixels, and shapes.

There are multiple types of classes that extend the View class, enabling many different
types of apps to be made, and they will all be compatible with the Activity class, which
is the foundation of all regular Android apps (including drawing apps and games).

It is, therefore, necessary to associate the Bitmap class that gets drawn on (through its
association with Canvas) with ImageView, once the drawing is done. The last step will
be telling Activity that our ImageView class represents the content for the user to see
by passing it to the setContentView method.

Canvas, Bitmap, Paint, and ImageView quick summary
If the theory of the code structure we need to set up seems like it is not simple, you will
breathe a sigh of relief when you see the relatively simple code shortly.

Telegram Channel @IRFaraExam

504 Drawing Graphics

A quick summary of what we know so far:

• Every app needs an Activity class to interact with the user and the underlying
operating system. Therefore, we must conform to the required hierarchy if we want
to succeed.

• We will use the ImageView class, which is a type of the View class. The View class
is what Activity needs to display our app to the user.

• The Canvas class supplies the ability to draw lines, pixels, and other graphics too.
It has all the methods for doing things such as drawing shapes, text, lines, and image
files, and even plotting individual pixels.

• The Bitmap class will be associated with the Canvas class and it is the surface that
actually gets drawn upon.

• The Canvas class uses the Paint class to configure details such as the color.

Finally, once the bitmap has been drawn upon, we must associate it with the
ImageView instance, which in turn is set as the view for Activity via the
setContentView method.

The result will be what we draw on the Bitmap instance in the Canvas instance,
which is displayed to the user through the ImageView instance via the call to the
setContentView method. Phew!

Note
It doesn't matter if that isn't 100% clear. It is not that you aren't seeing things
clearly – it simply isn't a clear relationship. Writing the code and using the
techniques over and over will cause things to become clearer. Look at the code,
do the demo apps in this chapter and the next, and then re-read this section.

Let's look at how to set up this relationship in code. Don't worry about typing the code;
just study it first.

Using the Canvas class
Let's look at the code and the different stages required to get drawing, and then we can
quickly move on to drawing something for real, with the Canvas demo app.

Telegram Channel @IRFaraExam

Using the Canvas class 505

Preparing the instances of the required classes
The first step is to declare the instances of the classes we require:

// Here are all the objects(instances)

// of classes that we need to do some drawing

ImageView myImageView;

Bitmap myBlankBitmap;

Canvas myCanvas;

Paint myPaint;

The previous code declares references of the ImageView, Bitmap, Canvas, and
Paint types. They are named myImageView, myBlankBitmap, myCanvas, and
myPaint, respectively.

Initializing the objects
Next, we need to initialize our new objects before using them:

// Initialize all the objects ready for drawing

// We will do this inside the onCreate method

int widthInPixels = 800;

int heightInPixels = 800;

myBlankBitmap = Bitmap.createBitmap(widthInPixels,

 heightInPixels,

 Bitmap.Config.ARGB_8888);

myCanvas = new Canvas(myBlankBitmap);

myImageView = new ImageView(this);

myPaint = new Paint();

// Do drawing here

Notice this comment in the previous code:

// Do drawing here

Telegram Channel @IRFaraExam

506 Drawing Graphics

This is where we would configure our color and draw stuff. Also, notice at the top of
the code we declare and initialize two int variables called widthInPixels and
heightInPixels. When we code the Canvas demo app, I will go into greater detail
about some of those lines of code.

We are now ready to draw. All we must do is assign the ImageView instance
to Activity.

Setting the Activity content
Finally, before we can see our drawing, we tell Android to use our ImageView instance
called myImageView as the content to display to the user:

// Associate the drawn upon Bitmap with the ImageView

myImageView.setImageBitmap(myBlankBitmap);

// Tell Android to set our drawing

// as the view for this app

// via the ImageView

setContentView(myImageView);

As we have already seen in every app so far, the setContentView method is part of
the Activity class and we pass in myImageView as an argument, instead of an XML
layout as we have been doing throughout the book so far. That's it. All we must learn now
is how to actually draw on that Bitmap instance.

Before we do some drawing, I thought it would be useful to start a real project, copy and
paste the code we have just discussed, a step at a time, into the correct place, and then
actually see something drawn to the screen.

Let's do some drawing.

Canvas demo app
We will create a new project just to explore the topic of drawing with Canvas. We will
reuse what we have just learned and this time, we will also draw to the Bitmap instance.

Creating a new project
Create a new project and call it Canvas Demo. Choose the Empty Activity template.

Telegram Channel @IRFaraExam

Canvas demo app 507

In addition, we are going to be using the vanilla version of the Activity class
and the MainActivity class will therefore extend Activity instead of
AppCompatActivity as we have been using previously. This is simply because we no
longer need the extra features provided by the AppCompatActivity class.

Note
The complete code for this app can be found in the download bundle in the
Chapter 20/Canvas Demo folder.

Coding the Canvas demo app
To get started, edit the code in MainActivity.java, including adding the import
directives and changing the version of the Activity class that the MainActivity class
inherits from. Also notice in the next code that the call to the setContentView method
has also been deleted. We will replace it soon:

import android.app.Activity;

import android.graphics.Bitmap;

import android.graphics.Canvas;

import android.graphics.Color;

import android.graphics.Paint;

import android.os.Bundle;

import android.widget.ImageView;

public class MainActivity extends Activity {

 // Here are all the objects(instances)

 // of classes that we need to do some drawing

 ImageView myImageView;

 Bitmap myBlankBitmap;

 Canvas myCanvas;

 Paint myPaint;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

Telegram Channel @IRFaraExam

508 Drawing Graphics

 }

}

Now that we have declared instances of the required classes, we can initialize them. Add
the following code to the onCreate method after the call to super.onCreate…, as
shown in this next code:

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 // Initialize all the objects ready for drawing

 // We will do this inside the onCreate method

 int widthInPixels = 800;

 int heightInPixels = 600;

 // Create a new Bitmap

 myBlankBitmap = Bitmap.createBitmap(widthInPixels,

 heightInPixels,

 Bitmap.Config.ARGB_8888);

 // Initialize the Canvas and associate it

 // with the Bitmap to draw on

 myCanvas = new Canvas(myBlankBitmap);

 // Initialize the ImageView and the Paint

 myImageView = new ImageView(this);

 myPaint = new Paint();

}

This code is the same as we saw when we were discussing Canvas earlier. It is worth
exploring the Bitmap class initialization as it is not straightforward.

Exploring the Bitmap initialization
Bitmaps, more typically in graphics-based apps and games, are used to represent objects
such as different brushes to paint with, the player, backgrounds, game objects, and so
on. Here we are simply using it to draw upon. In the next project, we will use bitmaps to
represent the subject of our drawing, not just the surface to draw upon.

Telegram Channel @IRFaraExam

Canvas demo app 509

The method that needs explaining is the createBitmap method. The parameters from
left to right are as follows:

• The width (in pixels)

• The height (in pixels)

• The bitmap configuration

Bitmaps can be configured in several different ways. The ARGB_8888 configuration
means that each pixel is represented by 4 bytes of memory.

There are a few bitmap formats that Android can use. This one is perfect for a good range
of colors and will ensure that the bitmaps we use and the colors we request will be drawn
as intended. There are higher and lower configurations but ARGB_8888 is perfect for the
entirety of this chapter.

Now we can do the actual drawing.

Drawing on the screen
Add this next highlighted code after the initialization of myPaint and inside the closing
curly brace of the onCreate method:

 myPaint = new Paint();

 // Draw on the Bitmap

 // Wipe the Bitmap with a blue color

 myCanvas.drawColor(Color.argb(255, 0, 0, 255));

 // Re-size the text

 myPaint.setTextSize(100);

 // Change the paint to white

 myPaint.setColor(Color.argb(255, 255, 255, 255));

 // Draw some text

 myCanvas.drawText("Hello World!",100, 100, myPaint);

 // Change the paint to yellow

 myPaint.setColor(Color.argb(255, 212, 207, 62));

 // Draw a circle

 myCanvas.drawCircle(400,250, 100, myPaint);

}

Telegram Channel @IRFaraExam

510 Drawing Graphics

The previous code uses the myCanvas.drawColor method to fill the screen with color.

The myPaint.setTextSize method defines the size of the text that will be drawn
next. The myPaint.setColor method determines what color any future drawing will
be. The myCanvas.drawText method actually draws the text to the screen.

Analyze the arguments passed into the drawText method and we can see that the text
will say "Hello World!" and will be drawn 100 pixels from the left and 100 pixels from the
top of our bitmap (myBitmap).

Next, we use the setColor method again to change the color that will be used for
drawing. Finally, we use the drawCircle method to draw a circle that is 400 pixels from
the left and 100 pixels from the top. The circle will have a radius of 100 pixels.

I reserved explaining the Color.argb method until now.

Explaining Color.argb
The Color class, unsurprisingly, helps us to manipulate and represent color. The
argb method used previously returns a color constructed using the alpha (opacity/
transparency), red, green, blue (argb) model. This model uses values ranging from 0 (no
color) to 255 (full color) for each element. It is important to note, although on reflection it
might seem obvious, that the colors mixed are intensities of light and are quite different to
what happens when we mix paint, for example.

Note
To devise an argb value and explore this model further, look at this handy
website: https://www.rapidtables.com/web/color/
RGB_Color.html. The site helps you pick the RGB values; you can then
experiment with the alpha values.

The values used to clear the drawing surface were 255, 0, 0, 255. These values mean
full opacity (solid color), no red, no green, and full blue. This makes a blue color.

The next call to the argb method is in the first call to setColor where we are setting
the required color for the text. The values 255, 255, 255, 255 mean full opacity, full
red, full green, and full blue. When you combine light with these values, you get white.

The final call to the argb method is in the final call to the setColor method when we
are setting the color to draw the circle. 255, 21, 207, 62 makes a sun-yellow color.

Telegram Channel @IRFaraExam

https://www.rapidtables.com/web/color/RGB_Color.html
https://www.rapidtables.com/web/color/RGB_Color.html

Canvas demo app 511

The last step before we can run the code is to add the call to the setContentView
method that places our ImageView (myImageView) as the View instance to be set as
the content for this app. Here are the final lines of code to be added before the closing
curly brace of the onCreate method:

// Associate the drawn upon Bitmap with the ImageView

myImageView.setImageBitmap(myBlankBitmap);

// Tell Android to set our drawing

// as the view for this app

// via the ImageView

setContentView(myImageView);

Finally, we tell the Activity class to use myImageView by calling the
setContentView method.

This is what the Canvas demo looks like when you run it. We can see an 800 by 800-pixel
drawing. In the next chapter, we will use more advanced techniques to utilize the entire
screen and we will also learn about threads to make the graphics move in real time:

Figure 20.1 – Canvas demo

It will help to understand the result of the coordinates we use in our Canvas class
drawing methods if we better understand the Android coordinate system.

Telegram Channel @IRFaraExam

512 Drawing Graphics

The Android coordinate system
As we can see, drawing a bitmap is trivial. But the coordinate system that we use to draw
our graphics onto needs a brief explanation.

Plotting and drawing
When we draw a Bitmap object to the screen, we pass in the coordinates we want to
draw the object at. The available coordinates of a given Android device depend upon the
resolution of its screen.

For example, the Google Pixel phone has a screen resolution of 1,920 pixels (across) by
1,080 pixels (down) when held in landscape view.

The numbering system of these coordinates starts in the top left-hand corner at 0, 0
and proceeds down and to the right until the bottom-right corner, which is pixel 1919,
1079. The apparent 1-pixel disparity between 1920 and 1919 and 1080 and 1079 is
because the numbering starts at 0.

So, when we draw a bitmap or anything else to the screen (such as Canvas circles and
rectangles), we must specify an x, y coordinate.

Furthermore, a bitmap (or Canvas shape) of course comprises many pixels. So, which
pixel of a given bitmap is drawn at the x, y screen coordinate that we will be specifying?

The answer is the top-left pixel of the Bitmap object. Look at the next figure, which
should clarify the screen coordinates using the Google Pixel phone as an example. As a
graphical means for explaining the Android coordinate drawing system, I will use a cute
spaceship graphic:

Figure 20.2 – Screen coordinates

Telegram Channel @IRFaraExam

Creating bitmaps 513

Furthermore, the coordinates are relative to what you draw upon. So, in the Canvas
demo app we just coded, as well as the next demo, the coordinates are relative to the
bitmap (myBitmap). In the next chapter, we will use the entire screen and the previous
figure will be an accurate representation of what is happening.

Let's do some more drawing, this time with bitmaps from a graphics file. We will use the
same starting code as we have seen in this app.

Creating bitmaps
Let's do a little bit of theory before we dive into the code and consider exactly how
we are going to bring images to life on the screen. To draw a bitmap, we will use the
drawBitmap method of the Canvas class.

First, we would need to add a bitmap to the project in the res/drawable folder; we will
do this for real in the Bitmap demo app coming up shortly. For now, assume the graphics
file/bitmap has the name myImage.png.

Next, we declare an object of the Bitmap type, just the same as we did for the Bitmap
object we used for our background in the previous demo:

Bitmap mBitmap;

Next, we need to initialize the mBitmap object using our preferred image that we
previously added to the project's drawable folder:

mBitmap = BitmapFactory.decodeResource

 (getResources(), R.drawable.myImage);

The static decodeResource method of the BitmapFactory method is used to
initialize mBitmap. It takes two parameters. The first is a call to getResources, which
is made available by the Activity class. This method, as the name suggests, gives access
to the project resources, and the second parameter, R.drawable.myImage, points to
the myImage.png file in the drawable folder. The bitmap (mBitmap) is now ready to
be drawn by the Canvas class.

You could then draw the bitmap with the following code:

// Draw the bitmap at coordinates 100, 100

mCanvas.drawBitmap(mBitmap,

 100, 100, mPaint);

Telegram Channel @IRFaraExam

514 Drawing Graphics

Here is what the spaceship graphic from the previous section looks like when drawn to the
screen as a reference for when we talk about rotating bitmaps:

Figure 20.3 – Spaceship graphic

Manipulating bitmaps
Quite often, however, we need to draw bitmaps in a rotated or otherwise-altered state. It
would be quite easy to use Photoshop or whatever your favorite image editing software
happens to be to create more bitmaps from the original bitmap to face in other directions.
Then, when we come to draw our bitmap, we can simply decide which way to face and
draw the appropriate pre-loaded bitmap.

However, I thought it would be much more interesting and instructive if we worked
with just one single source image and learned about the class that Android provides to
manipulate images in our Java code. You will then be able to add rotating and inverting
graphics to your app developer's toolkit.

What is a bitmap exactly?
A bitmap is called a bitmap because that is exactly what it is: a map of bits. While there
are many bitmap formats that use different ranges and values to represent colors and
transparency, they all amount to the same thing. They are a grid/map of values and each
value represents the color of a single pixel.

Therefore, to rotate, scale, or invert a bitmap, we must perform the appropriate
mathematical calculation upon each pixel/bit of the image/grid/map of the bitmap. The
calculations are not terribly complicated, but they are not especially simple either. If you
took math to the end of high school, you will probably understand the math without too
much bother.

Unfortunately, understanding the math isn't enough. We would also need to devise
efficient code, as well as understanding the bitmap format, and then modify our code for
each format. This would not be trivial. Fortunately, the Android API has done it all for us.
Meet the Matrix class.

Telegram Channel @IRFaraExam

Manipulating bitmaps 515

The Matrix class
The class is named Matrix because it uses the mathematical concept and rules to
perform calculations on a series of values known as matrices – the plural of matrix.

Note
The Android Matrix class has nothing to do with the movie series of the
same name. However, the author advises that all aspiring app developers take
the red pill.

You might be familiar with matrices but don't worry if you're not because the Matrix
class hides all the complexity away. Furthermore, the Matrix class not only allows us to
perform calculations on a series of values, but it also has some pre-prepared calculations
that enable us to do things such as rotating a point around another point by a specific
number of degrees. All this without knowing anything about trigonometry.

Note
If you are intrigued by how the math works and want an absolute
beginner's guide to the mathematics of rotating game objects, then look
at this series of Android tutorials on my website that ends with a flyable and
rotatable spaceship:

http://gamecodeschool.com/essentials/calculating-
heading-in-2d-games-using-trigonometric-functions-
part-1/

http://gamecodeschool.com/essentials/rotating-
graphics-in-2d-games-using-trigonometric-
functions-part-2/

http://gamecodeschool.com/android/2d-rotation-and-
heading-demo/

This book will stick to using the Android Matrix class, but we will do slightly more
advanced math when we create a particle system in the next chapter.

Inverting a bitmap to face the opposite direction
First, we need to create an instance of the Matrix class. This next line of code does so in
a familiar way by calling new on the default constructor:

Matrix matrix = new Matrix();

Telegram Channel @IRFaraExam

http://gamecodeschool.com/essentials/calculating-heading-in-2d-games-using-trigonometric-functions-part-1/
http://gamecodeschool.com/essentials/calculating-heading-in-2d-games-using-trigonometric-functions-part-1/
http://gamecodeschool.com/essentials/calculating-heading-in-2d-games-using-trigonometric-functions-part-1/
http://gamecodeschool.com/essentials/rotating-graphics-in-2d-games-using-trigonometric-functions-part-2/
http://gamecodeschool.com/essentials/rotating-graphics-in-2d-games-using-trigonometric-functions-part-2/
http://gamecodeschool.com/essentials/rotating-graphics-in-2d-games-using-trigonometric-functions-part-2/
http://gamecodeschool.com/android/2d-rotation-and-heading-demo/
http://gamecodeschool.com/android/2d-rotation-and-heading-demo/

516 Drawing Graphics

Note
Note that you don't need to add any of this code to a project right now; it will
all be shown again shortly with much more context. I just thought it would be
easier to see all the Matrix-related code on its own beforehand.

Now we can use one of the many neat methods of the Matrix class. The preScale
method takes two parameters: one for the horizontal change and one for the vertical
change. Look at this line of code:

matrix.preScale(-1, 1);

What the preScale method will do is loop through every pixel position and multiply all
the horizontal coordinates by -1 and all the vertical coordinates by 1.

The effect of these calculations is that all the vertical coordinates will remain the
same because if you multiply by 1, then the number doesn't change. However, when
you multiply by -1, the horizontal position of the pixel will be inverted. Take the
following example:

Horizontal positions 0, 1, 2, 3, and 4 will become 0, -1, -2, -3, and -4.

At this stage, we have created a matrix that can perform the necessary calculations on a
bitmap. We haven't actually done anything with the bitmap yet. To use the matrix, we call
the createBitmap method of the Bitmap class such as this line of code shown next:

mBitmapLeft = Bitmap

.createBitmap(mBitmap,

 0, 0, 25, 25, matrix, true);

The previous code assumes that mBitmapLeft is already initialized as well as mBitmap.
The parameters of the createBitmap method are explained as follows:

• mBitmapHeadRight is a Bitmap object that has already been created and scaled
and has the image of a spaceship (facing the right) loaded into it. This is the image
that will be used as the source for creating the new bitmap. The source bitmap will
not actually be altered at all.

• 0, 0 is the horizontal and vertical starting position that we want the new bitmap to
be mapped into.

• The 25, 25 parameters are values that set the size that the bitmap is scaled to.

Telegram Channel @IRFaraExam

Manipulating bitmaps 517

• The next parameter is our pre-prepared Matrix instance, matrix.

• The final parameter, true, instructs the createBitmap method that filtering
is required to correctly handle the creation of the bitmap.

This is what mBitmapLeft will look like when drawn to the screen:

Figure 20.4 – mBitmapLeft

We can also create the bitmap facing up or down using a rotation matrix.

Rotating the bitmap to face up or down
Let's look at rotating a bitmap, and then we can build the demo app. We already have an
instance of the Matrix class, so all we must do is call the preRotate method to create
a matrix capable of rotating every pixel by a specified number of degrees in the single
argument to preRotate. Look at this line of code:

// A matrix for rotating

matrix.preRotate(-90);

How simple was that? The matrix instance is now ready to rotate any series of numbers
we pass to it, anti-clockwise (-), by 90 degrees.

This next line of code has exactly the same parameters as the previous call to
createBitmap that we previously dissected, except that the new Bitmap instance
is assigned to mBitmapUp and the effect of matrix is to perform the rotation instead
of preScale:

mBitmapUp = Bitmap

.createBitmap(mBitmap,

 0, 0, ss, ss, matrix, true);

Telegram Channel @IRFaraExam

518 Drawing Graphics

This is what mBitmapUp will look like when drawn:

Figure 20.5 – mBitmapUp

You can also use the same technique but a different value in the argument to preRotate
to turn the bitmap downward. Let's get on with the demo app to see all this stuff in action.

Bitmap manipulation demo app
Now that we have studied the theory, let's draw and spin some bitmaps. Create a new
project using the Empty Activity template and call it Manipulating Bitmaps.

Adding the graphic to the project
Right-click and select Copy to copy the bob.png graphics file from the download bundle
in the Chapter 20/Manipulating Bitmaps/drawable folder.

In Android Studio, locate the app/res/drawable folder in the project explorer
window. This next screenshot makes clear where this folder can be located and what it will
look like with the bob.png image in it:

Figure 20.6 – app/res/drawable folder with bob.png

Telegram Channel @IRFaraExam

Bitmap manipulation demo app 519

Right-click on the drawable folder and select Paste to add the bob.png file to
the project. Click OK twice to confirm the default options for importing the file into
the project.

Edit the code of the MainActivity class to include all the required import directives,
the basic version of the Activity class, and a selection of member variables so we can
get started. The state of the MainActivity class at this stage is shown next:

import android.app.Activity;

import android.graphics.Bitmap;

import android.graphics.Canvas;

import android.graphics.Paint;

import android.os.Bundle;

import android.widget.ImageView;

import android.graphics.BitmapFactory;

import android.graphics.Color;

import android.graphics.Matrix;

public class MainActivity extends Activity {

 // Here are all the objects(instances)

 // of classes that we need to do some drawing

 ImageView myImageView;

 Bitmap myBlankBitmap;

 Bitmap bobBitmap;

 Canvas myCanvas;

 Paint myPaint;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 }

}

Telegram Channel @IRFaraExam

520 Drawing Graphics

Now we can initialize all the members in onCreate:

// Initialize all the objects ready for drawing

int widthInPixels = 2000;

int heightInPixels = 1000;

// Create a new Bitmap

myBlankBitmap = Bitmap.createBitmap(widthInPixels,

 heightInPixels,

 Bitmap.Config.ARGB_8888);

// Initialize Bob

bobBitmap = BitmapFactory.decodeResource

 (getResources(), R.drawable.bob);

// Initialize the Canvas and associate it

// with the Bitmap to draw on

myCanvas = new Canvas(myBlankBitmap);

// Initialize the ImageView and the Paint

myImageView = new ImageView(this);

myPaint = new Paint();

// Draw on the Bitmap

// Wipe the Bitmap with a blue color

myCanvas.drawColor(Color.argb(255, 0, 0, 255));

Next, we add calls to three methods that we will write soon and set our new drawing as
the view for the app:

// Draw some bitmaps

drawRotatedBitmaps();

drawEnlargedBitmap();

drawShrunkenBitmap();

// Associate the drawn upon Bitmap with the ImageView

myImageView.setImageBitmap(myBlankBitmap);

// Tell Android to set our drawing

Telegram Channel @IRFaraExam

Bitmap manipulation demo app 521

// as the view for this app

// via the ImageView

setContentView(myImageView);

Now add the drawRotatedBitmap method that does the bitmap manipulation:

void drawRotatedBitmaps(){

 float rotation = 0f;

 int horizontalPosition =350;

 int verticalPosition = 25;

 Matrix matrix = new Matrix();

 Bitmap rotatedBitmap = Bitmap.createBitmap(100,

 200,

 Bitmap.Config.ARGB_8888);

 for(rotation = 0; rotation < 360; rotation += 30){

 matrix.reset();

 matrix.preRotate(rotation);

 rotatedBitmap = Bitmap

 .createBitmap(bobBitmap,

 0, 0, bobBitmap

 .getWidth()-1,

 bobBitmap.getHeight()-1,

 matrix, true);

 myCanvas.drawBitmap(rotatedBitmap,

 horizontalPosition,

 verticalPosition,

 myPaint);

 horizontalPosition += 120;

 verticalPosition += 70;

 }

}

Telegram Channel @IRFaraExam

522 Drawing Graphics

The previous code uses a for loop to loop through 360 degrees 30 degrees at a time. The
value that each pass through the loop is used in the Matrix instance to rotate the image
of Bob, and he is then drawn to the screen using the drawBitmap method.

Add the final two methods as shown next:

void drawEnlargedBitmap(){

 bobBitmap = Bitmap

 .createScaledBitmap(bobBitmap,

 300, 400, false);

 myCanvas.drawBitmap(bobBitmap, 25,25, myPaint);

}

void drawShrunkenBitmap(){

 bobBitmap = Bitmap

 .createScaledBitmap(bobBitmap,

 50, 75, false);

 myCanvas.drawBitmap(bobBitmap, 250,25, myPaint);

}

The drawEnlargedBitmap method uses the createScaledBitmap method, which
is 300 by 400 pixels. The drawBitmap method then draws it to the screen.

drawShrunkenBitmap uses the exact same technique except it scales then draws a 50
by 75-pixel image.

Run the app to see Bob grow, then shrink, then spin around through 360 degrees at
30-degree intervals, as shown in this next screenshot:

Figure 20.7 – How the app runs

Telegram Channel @IRFaraExam

Frequently asked question 523

The only thing missing from our drawing repertoire is the ability to watch all this activity
as it happens. We will fix this gap in our knowledge in the next chapter.

Frequently asked question
1. I know how to do all this drawing but I can't see anything move. Why?

To see things move, you need to be able to regulate when each part of the drawing
occurs. You need to use animation techniques. This is not trivial but it is not beyond
the grasp of a determined beginner either. We will study the required topics in the
next chapter.

Summary
In this chapter, we saw how to draw custom shapes, text, and bitmaps. Now that we know
how to draw and manipulate primitive shapes, text, and bitmaps, we can take things up
a level.

In the next chapter, we will start our next major app, which is a kid's drawing app that
actually comes to life at the press of a button.

Telegram Channel @IRFaraExam

Telegram Channel @IRFaraExam

21
Threads and Starting

the Live Drawing
App

In this chapter, we will get started on our next app. This app will be a kid's drawing app
where the user can draw on the screen with their finger. This drawing app will be slightly
different, however. The lines that the user draws will comprise particle systems that
explode into thousands of pieces. We will call the project Live Drawing.

To achieve this, we will do the following:

• Get started with the Live Drawing app

• Learn about real-time interaction, sometimes called a game loop

• Learn about threads

• Code a real-time system ready to draw with in the next chapter

Let's get started.

Telegram Channel @IRFaraExam

526 Threads and Starting the Live Drawing App

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2021.

Creating the Live Drawing project
To get started, create a new project in Android Studio and call it Live Drawing. Use the
Empty Activity project.

Now we will consider the name of the files and the screen real estate. In this project,
we will learn something new. It is not always appropriate to use the default name for our
Activity class. In this project, the Activity class isn't going to be the most significant class
and MainActivity doesn't seem like an appropriate name. Let's rename it.

Refactoring MainActivity to LiveDrawingActivity
It is a good practice to use meaningful names for all the different parts of our code. For
this project, I think MainActivity is a bit vague and inconclusive. We could make
do with it, but let's rename it to something more meaningful. This will also let us see
how we can use the refactoring tool of Android Studio. The reason that we use the
term refactoring instead of just renaming is when we change the names we use in our
code, there is often much more than just a simple name change going on behind the
scenes. For example, in a moment, when we refactor the MainActivity filename to
LiveDrawingActivity, Android Studio will change the name of the file as well
as some code in the AndroidManifest.xml file and the MainActivity.java
(soon to be LiveDrawingActivity.java) file.

In the project panel, right-click the MainActivity file and select Refactor | Rename.
In the pop-up window, change MainActivity to LiveDrawingActivity. Leave all the other
options as their defaults and left-click the Refactor button.

Notice the filename in the project panel has changed as expected but also multiple
occurrences of MainActivity have been changed to LiveDrawingActivity in the
AndroidManifest.xml file as well as an instance in the LiveDrawingActivity.
java file. You can scan these files now to see this if you are interested, but we will go into
more detail about both files in the upcoming sections anyway.

Note
Refactoring is an important tool and understanding that there is more going on
behind the scenes is vital to avoid confusion.

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2021
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2021
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2021

Creating the Live Drawing project 527

Locking the game to fullscreen and landscape
orientation
We want to use every pixel that the user's Android device has to offer so we will make
changes to the AndroidManifest.xml file, which allows us to use a style for our app
that hides all the default menus from the user interface.

Open the AndroidManifest.xml file from the manifests folder. In the
AndroidManifest.xml file, locate the following line of code: android:name=".
LiveDrawingActivity">.

Place the cursor before the closing > shown previously. Tap the Enter key a couple of times
to move the > a couple of lines below the rest of the line shown previously.

Immediately below ".LiveDrawingActivity" but before the newly positioned >,
type or copy and paste this next line of code to make the game run without the default
user interface.

Note that the line of code is shown on two lines because it is too long to fit on a printed
page, but in Android Studio you should enter it as one line:

android:theme=

"@android:style/Theme.Holo.Light.NoActionBar.Fullscreen"

This is a fiddly set of steps so here I am showing you a bigger range of this file with the
code we just added highlighted among it for extra context. As mentioned previously,
I have had to show some lines of code over two lines:

…

<activity android:name=".LiveDrawingActivity"

 android:theme=

 "@android:style/

 Theme.Holo.Light.NoActionBar.Fullscreen"

 >

 <intent-filter>

 <action android:name="android.intent.action.MAIN"

 />

<category android:name= "android.intent.category.LAUNCHER" />

 </intent-filter>

</activity>

…

Telegram Channel @IRFaraExam

528 Threads and Starting the Live Drawing App

Now our app will use all the screen space the device makes available without any extra
menus. We will also see some new Java code to make our app dominate every pixel of
the screen.

Making some placeholder classes
This app consists of Java files only. The Java files with all the code up to the end of this
chapter can all be found in the Chapter 21 folder of the download bundle.

Next, we will create empty classes that we will code throughout the project over the
next two chapters. Create a new class called LiveDrawingView, a new class called
ParticleSystem, and a new class called Particle.

Let's look ahead a bit.

Looking ahead at the Live Drawing app
As this app is more in-depth and needs to respond in real-time, it is necessary to use
a slightly more in-depth structure. At first, this seems like a complication but in the
long run, it can even make our code simpler and easier to understand.

We will have four classes in the Live Drawing app:

• LiveDrawingActivity: The Activity class provided by the Android API is
the class that interacts with the operating system. We have already seen how the OS
interacts with onCreate when the user clicks the app icon to start an app. Rather
than have a class called MainActivity that does everything, we will have an
Activity-based class that just handles the startup and shutdown of our app as well as
helping a bit with initialization by getting the screen resolution. It makes sense that
this class will be of type Activity. However, as you will soon see, we will delegate
interacting with touches to another class, the same class that will also handle almost
every aspect of the app. This will introduce us to some interesting concepts that will
be new to us.

• LiveDrawingView: This is the class that will be responsible for doing the drawing
and creating the real-time environment, which allows the user to interact at the
same time as their creations are moving and evolving.

• ParticleSystem: This is the class that will manage up to thousands of instances
of the Particle class.

• Particle: This class will be the simplest of them all. It will have a location
onscreen and a heading. It will update itself around 60 times per second when
prompted to by the LiveDrawingView class.

Telegram Channel @IRFaraExam

Creating the Live Drawing project 529

Now we can start coding.

Coding the LiveDrawingActivity class
Let's get started with coding the Activity based class. We called this class
LiveDrawingActivity when we refactored MainActivity.

Replace the contents of the LiveDrawingActivity class (excluding the package
declaration) with the following code:

import android.app.Activity;

import android.graphics.Point;

import android.os.Bundle;

import android.view.Display;

import android.view.Window;

public class LiveDrawingActivity extends Activity {

 private LiveDrawingView mLiveDrawingView;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 requestWindowFeature(Window.FEATURE_NO_TITLE);

 Display display = getWindowManager()

 .getDefaultDisplay();

 Point size = new Point();

 display.getSize(size);

 mLiveDrawingView = new LiveDrawingView(

 this, size.x, size.y);

 setContentView(mLiveDrawingView);

 }

}

Telegram Channel @IRFaraExam

530 Threads and Starting the Live Drawing App

The code shows some errors and we will talk about them shortly.

The first new line of code is this:

requestWindowFeature(Window.FEATURE_NO_TITLE);

This line of code removes the title from the user interface. The screen will be completely
empty when we run this app.

The code gets the number of pixels (wide and high) for the device in the following way.
Look again at the next new line of code:

Display display = getWindowManager().getDefaultDisplay();

We create an object of type Display called display and initialize it with the result of
calling both getWindowManager then getDefaultDisplay methods in turn, which
are part of the Activity class.

Then we create a new object called size of the Point type. We send size as an
argument to the display.getSize method. The Point type has an x and y member
variable, and therefore, so does the size object, which after the third line of code now
holds the width and height (in pixels) of the display.

Now we have the screen resolution in x and y variables hidden away in the size object.

The next new thing is that we are declaring an instance of our LiveDrawingView class.
Currently, this is an empty class:

private LiveDrawingView mLiveDrawingView;

Next in the onCreate method, we initialize mLiveDrawingView like this:

mLiveDrawingView = new LiveDrawingView(this, size.x, size.y);

What we are doing is passing three arguments to the LiveDrawingView constructor.
We have obviously not coded a constructor yet and as we know the default constructor
takes zero arguments. Therefore, this line will cause an error until we fix it.

The arguments passed in are interesting. First, this, which is a reference to the
LiveDrawingActivity class. The LiveDrawingView class will need to use methods
that it needs this reference for.

The second and third arguments are the horizontal and vertical screen resolution. It
makes sense that our app will need these to perform tasks such as detecting the edge of
the screen and scaling the drawing objects to an appropriate size. We will discuss these
arguments further when we get to coding the LiveDrawingView constructor.

Telegram Channel @IRFaraExam

Creating the Live Drawing project 531

Next, take a look at the line that follows:

setContentView(mLiveDrawingView);

This is where, in the Canvas Demo app, we set the ImageView as the content for the app.
Remember that the Activity class's setContentView method must take a View
object and ImageView is a View. This previous line of code seems to be suggesting
that we will use our LiveDrawingView class as the visible content for the app. But
LiveDrawingView, despite its name, isn't a View. Not yet anyway.

We will fix the constructor and the not a View problem after we add a few more lines of
code to LiveDrawingActivity.

Reader challenge
Can you guess which OOP concept the solution might be?

Add these two overridden methods and then we will talk about them. Add them below
the closing curly brace of the onCreate method but before the closing curly brace of the
LiveDrawingActivity class:

@Override

protected void onResume() {

 super.onResume();

 // More code here later in the chapter

}

@Override

protected void onPause() {

 super.onPause();

 // More code here later in the chapter

}

What we have done is to override two more of the methods of the Activity class.
We will see why we need to do this and what we will do inside these methods. The
point to note here is that by adding these overridden methods, we are giving the OS the
opportunity to notify us of the user's intentions in two more situations. Much as we did
when saving and loading our data in the Note to Self app.

Telegram Channel @IRFaraExam

532 Threads and Starting the Live Drawing App

It makes sense at this point to move on to the LiveDrawingView class, the main
class of this app. We will come back to the LiveDrawingActivity class near the
end of the chapter.

Coding the LiveDrawingView class
The first thing we will do is solve the problem of our LiveDrawingView class not being
of type View. Update the class declaration as highlighted, like this:

class LiveDrawingView extends SurfaceView {

Note
You will need to import the android.view.SurfaceView class.

SurfaceView is a descendant of View and now LiveDrawingView is, by inheritance,
also a type of View. Look again at the import statement that has been added. This
relationship is made clear as highlighted next:

import android.view.SurfaceView

Note
Remember that it is because of polymorphism that we can send
descendants of View to the setContentView method in the
LiveDrawingActivity class and it is because of inheritance that the
LiveDrawingView class is now a type of SurfaceView.

There are quite a few descendants of View that we could have extended to fix this initial
problem, but we will see as we continue that the SurfaceView class has some very
specific features that are perfect for real-time-interactive apps that made this choice the
right one for us.

We still have errors in both this class and the LiveDrawingActivity class. Both are
due to the lack of a suitable constructor method.

Here is a screenshot showing the error in the LiveDrawingView class since we
extended SurfaceView:

Telegram Channel @IRFaraExam

Creating the Live Drawing project 533

Figure 21.1 – The error in the LiveDrawingView class

The error in LiveDrawingActivity is more obvious; we are calling a method
that doesn't exist. However, the error shown in the previous screenshot is less easily
understood. Let's discuss the error in the LiveDrawingView class declaration now.

The LiveDrawingView class, now it is a SurfaceView, must be supplied with
a constructor because, as mentioned in the OOP chapters, once you have provided your
own constructor the default (no parameter) one ceases to exist. As the SurfaceView
class implements several different constructors, we must specifically implement one of
these or write our own. Hence the previous error.

As none of the SurfaceView provided constructors are exactly what we need, we will
provide our own.

Note
If you are wondering how on earth you know what constructors are supplied
and any other details you need to find out about an Android class, just Google
it. Type the class name followed by API. Google will almost always supply as
the top result a link to the relevant page on the Android developer's website.
Here is a direct link to the SurfaceView page: https://developer.
android.com/reference/android/view/SurfaceView.
html. Look under the Public constructors heading, and you will see that
some constructors are optionally made available.

The LiveDrawingActivity also requires us to create a constructor that matches the
way we try to initialize it in this line of code from the LiveDrawingActivity class:

mLiveDrawingView = new LiveDrawingView(this, size.x, size.y);

 Let's add a constructor that matches the call from LiveDrawingActivity that passes
in this and the screen resolution and solve both problems at once.

Telegram Channel @IRFaraExam

https://developer.android.com/reference/android/view/SurfaceView.html
https://developer.android.com/reference/android/view/SurfaceView.html
https://developer.android.com/reference/android/view/SurfaceView.html

534 Threads and Starting the Live Drawing App

Coding the LiveDrawingView class
Remember that the LiveDrawingView class cannot see the variables in the
LiveDrawingActivity class. By using the constructor, LiveDrawingActivity
is providing LiveDrawingView with a reference to itself (this) as well as the
screen size in pixels contained in size.x and size.y. Add this constructor to the
LiveDrawingView.java file. The code must go within the opening and closing curly
braces of the class. It is a convention but not required to place constructors above other
methods but after member variable declarations:

// The LiveDrawingView constructor

// Called when this line:

// mLiveDrawingView = new LiveDrawingView(this, size.x,
size.y);

// is executed from LiveDrawingActivity

public LiveDrawingView(Context context, int x, int y) {

 // Super... calls the parent class

 // constructor of SurfaceView

 // provided by the Android API

 super(context);

}

Note
Import the Context class with this line of code:

import android.content.Context;

Now we have no errors in our LiveDrawingView class or the
LiveDrawingActivity class that initializes it.

At this stage, we could run the app and see that using LiveDrawingView as the
View in setContentView has worked and we have a beautiful blank screen,
ready to draw our particle systems on. Try this if you like, but we will be coding the
LiveDrawingView class so that it does something, including adding code to the
constructor, next.

We will be returning to this class constantly over the course of this project. What
we will do right now is get the fundamentals set up ready to add the ParticleSystem
instances after we have coded them in the next chapter.

Telegram Channel @IRFaraExam

Creating the Live Drawing project 535

To achieve this, first, we will add a bunch of member variables, then we will add
some code inside the constructor to set the class up when it is instantiated/created by
LiveDrawingActivity.

Following on, we get to code the draw method, which will reveal the new steps that
we need to take to draw on the screen 60 times per second and we will also see some
familiar code that uses our old friends Canvas, Paint, and drawText from the
previous chapter.

At this point, we need to discuss some more theory – things such as how we will time the
animations of the particles and how we lock these timings without interfering with the
smooth running of Android. These last two topics, the game loop and threads, will then
allow us to add the final code of the chapter and witness our particle system painting app
in action – albeit with just a bit of text.

Note
A game loop is a concept that describes allowing virtual systems to update and
draw themselves at the same time as allowing them to be altered/interacted
with by the user.

Adding the member variables
Add the variables as shown below, after the LiveDrawingView declaration but before
the constructor, then import the necessary extra classes:

// Are we debugging?

private final boolean DEBUGGING = true;

// These objects are needed to do the drawing

private SurfaceHolder mOurHolder;

private Canvas mCanvas;

private Paint mPaint;

// How many frames per second did we get?

private long mFPS;

// The number of milliseconds in a second

private final int MILLIS_IN_SECOND = 1000;

// Holds the resolution of the screen

private int mScreenX;

Telegram Channel @IRFaraExam

536 Threads and Starting the Live Drawing App

private int mScreenY;

// How big will the text be?

private int mFontSize;

private int mFontMargin;

// The particle systems will be declared here later

// These will be used to make simple buttons

Add the following import code:

import android.graphics.Canvas;

import android.graphics.Paint;

import android.view.SurfaceHolder;

Be sure to study the code and then we can talk about it.

We are using the naming convention of adding m before the member variable names. As
we add local variables in the methods, this will help distinguish them from each other.

Also, notice that all the variables are declared private. You could happily delete all the
private access specifiers and the code would still work but as we have no need to access
any of these variables from outside of this class, it is sensible to guarantee it can never
happen by declaring them private.

The first member variable is DEBUGGING. We have declared this as final because we
don't want to change its value during the app's execution. Note that declaring it final
does not preclude us from switching its value manually when we wish to switch between
debugging and not debugging.

The next three classes we declared instances of will handle the drawing on the screen.
Notice the new one we have not seen before that I have highlighted:

// These objects are needed to do the drawing

private SurfaceHolder mOurHolder;

private Canvas mCanvas;

private Paint mPaint;

The SurfaceHolder class is required to enable drawing to take place. It literally is the
object that holds the drawing surface. We will see the methods it allows us to use to draw
on the screen when we code the draw method in a minute.

Telegram Channel @IRFaraExam

Creating the Live Drawing project 537

The next two variables give us a bit of insight into what we will need to achieve our
smooth and consistent animation. Here they are again:

// How many frames per second did we get?

private long mFPS;

// The number of milliseconds in a second

private final int MILLIS_IN_SECOND = 1000;

The mFPS variable is of type long because it will be holding a huge number. Computers
measure time in milliseconds since 1970 – more on that when we talk about the game
loop. But for now, we need to know that monitoring and measuring the speed of each
frame of animation is how we will make sure that the particles move exactly as they
should.

The first mFPS will be reinitialized every frame of animation, around 60 times per second.
It will be passed into each of the particle system (every frame of animation) so that it
knows how much time has elapsed.

The MILLIS_IN_SECOND variable is initialized to 1000. There are indeed 1000
milliseconds in a second. We will use this variable in calculations as it will make our code
clearer than if we used the literal value 1000. It is declared final because the number of
milliseconds in a second will obviously never change.

The next piece of the code we just added is shown again here for convenience:

// Holds the resolution of the screen

private int mScreenX;

private int mScreenY;

// How big will the text be?

private int mFontSize;

private int mFontMargin;

The variables mScreenX and mScreenY will hold the horizontal and vertical resolution
of the screen. Remember that they are being passed in from LiveDrawingActivity
into the constructor.

The next two, mFontSize and mMarginSize, will be initialized based on the screen
size in pixels, to hold a value in pixels to make the formatting of our text neat and more
concise than constantly doing calculations for each bit of text.

Now we can begin to initialize some of these variables in the constructor.

Telegram Channel @IRFaraExam

538 Threads and Starting the Live Drawing App

Coding the LiveDrawingView constructor
Add the highlighted code to the constructor. Be sure to study the code as well and then
we can discuss it:

public LiveDrawingView(Context context, int x, int y) {

 // Super... calls the parent class

 // constructor of SurfaceView

 // provided by Android

 super(context);

 // Initialize these two members/fields

 // With the values passed in as parameters

 mScreenX = x;

 mScreenY = y;

 // Font is 5% (1/20th) of screen width

 mFontSize = mScreenX / 20;

 // Margin is 1.3% (1/75th) of screen width

 mFontMargin = mScreenX / 75;

 // getHolder is a method of SurfaceView

 mOurHolder = getHolder();

 mPaint = new Paint();

 // Initialize the two buttons

 // Initialize the particles and their systems

}

The code we just added to the constructor begins by using the values passed in
as parameters (x and y) to initialize mScreenX and mScreenY. Our entire
LiveDrawingView class now has access to the screen resolution whenever it needs it.
Here are the two lines again:

// Initialize these two members/fields

 // With the values passed in as parameters

 mScreenX = x;

 mScreenY = y;

Telegram Channel @IRFaraExam

Creating the Live Drawing project 539

Next, we initialize mFontSize and mFontMargin as a fraction of the screen width in
pixels. These values are a bit arbitrary, but they work, and we will use various multiples
of these variables to align text neatly on the screen. Here are the two lines of code I am
referring to:

 // Font is 5% (1/20th) of screen width

 mFontSize = mScreenX / 20;

 // Margin is 1.3% (1/75th) of screen width

 mFontMargin = mScreenX / 75;

Moving on, we initialize our Paint and SurfaceHolder objects. Paint uses the
default constructor as we have done previously but mHolder uses the getHolder
method, which is a method of the SurfaceView class. The getHolder method
returns a reference that is initialized to mHolder so mHolder is now that reference.
In short, mHolder is now ready to be used. We have access to this handy method because
LiveDrawingView is a SurfaceView:

 // getHolder is a method of SurfaceView

 mOurHolder = getHolder();

 mPaint = new Paint();

We will need to do more preparation in the draw method before we can use our Paint
and Canvas classes as we have done before. We will see exactly what very soon. Notice
the comments indicating where we will eventually get around to initializing the particle
systems as well as two control buttons.

Let's get ready to draw.

Coding the draw method
Add the draw method shown next immediately after the constructor method. There will
be a couple of errors in the code. We will deal with them, then we will go into detail about
how the draw method will work in relation to the SurfaceView class because there are
some completely alien-looking lines of code in there as well as some familiar ones. This is
the code to add:

// Draw the particle systems and the HUD

private void draw() {

if (mOurHolder.getSurface().isValid()) {

// Lock the canvas (graphics memory) ready to draw

 mCanvas = mOurHolder.lockCanvas();

Telegram Channel @IRFaraExam

540 Threads and Starting the Live Drawing App

 // Fill the screen with a solid color

 mCanvas.drawColor(Color.argb(255, 0, 0, 0));

 // Choose a color to paint with

 mPaint.setColor(Color.argb(255, 255, 255, 255));

 // Choose the font size

 mPaint.setTextSize(mFontSize);

 // Draw the particle systems

 // Draw the buttons

 // Draw the HUD

 if(DEBUGGING){

 printDebuggingText();

 }

 // Display the drawing on screen

 // unlockCanvasAndPost is a method of

 SurfaceHolder

 mOurHolder.unlockCanvasAndPost(mCanvas);

 }

}

We have two errors. One is that the Color class needs importing. You can fix this in
the usual way or add the next line of code manually. Whichever method you choose, the
following extra line needs to be added to the code at the top of the file:

import android.graphics.Color;

Let's deal with the other error.

Telegram Channel @IRFaraExam

Creating the Live Drawing project 541

Adding the printDebuggingText method
The second error is the call to printDebuggingText. The method doesn't exist yet.
Let's add that now.

Add the code after the draw method:

private void printDebuggingText(){

 int debugSize = mFontSize / 2;

 int debugStart = 150;

 mPaint.setTextSize(debugSize);

 mCanvas.drawText("FPS: " + mFPS ,

 10, debugStart + debugSize, mPaint);

 // We will add more code here in the next chapter

}

The previous code uses the local variable debugSize to hold a value that is half that of
the member variable mFontSize. This means that as mFontSize (which is used for
the HUD) is initialized dynamically based on the screen resolution, debugSize will
always be half that. The debugSize variable is then used to set the size of the font before
we start drawing the text. The debugStart variable is just a guess at a good position
vertically to start printing the debugging text.

These two values are then used to position a line of text on the screen that shows the
current frames per second. As this method is called from draw, which in turn will be
called from the game loop, this line of text will be constantly refreshed up to 60 times
per second.

Note
It is possible that on very high- or very low-resolution screens, you might need
to experiment with the text size to find something more appropriate for your
screen.

Let's explore those new lines of code in the draw method and exactly how we can use
SurfaceView, from which our LiveDrawingView class is derived, to handle all our
drawing requirements.

Telegram Channel @IRFaraExam

542 Threads and Starting the Live Drawing App

Understanding the draw method and the SurfaceView class
Starting in the middle of the method and working outwards for a change, we have a few
familiar things such as the calls to the drawColor, setTextSize, and drawText
methods. We can also see the comment that indicates where we will eventually add code
to draw the particle systems and the HUD:

• The drawColor code clears the screen with a solid color.

• The setTextSize method sets the size of the text for drawing the HUD.

• We will code drawing the HUD once we have explored particle systems a little
more. We will let the player know how many particles and systems their drawing
comprises.

What is totally new, however, is the code at the very start of the draw method. Here it
is again:

if (mOurHolder.getSurface().isValid()) {

// Lock the canvas (graphics memory) ready to draw

mCanvas = mOurHolder.lockCanvas();

…

…

The if statement contains a call to getSurface and chains it with a call to
isValid. If this line returns true, it confirms that the area of memory that we
want to manipulate to represent our frame of drawing is available, and the code
continues inside the if statement.

What goes on inside those methods (especially the first) is quite complex. They are
necessary because all our drawing and other processing (such as moving the objects)
will take place asynchronously with the code that detects the user input and listens to the
operating system for messages. This wasn't an issue in the previous project because our
code just drew a single frame and then sat there waiting.

Telegram Channel @IRFaraExam

The game loop 543

Now we want to execute the code 60 times a second, we are going to need to confirm that
we have access to the memory – before we access it.

This raises more questions about how this code runs asynchronously. That will be
answered when we discuss threads shortly. For now, just know that the line of code checks
if some other part of our code or Android itself is currently using the required portion of
memory. If it is free, then the code inside the if statement executes.

Furthermore, the first line of code to execute inside the if statement calls the
lockCanvas method so that if another app or Android tries to access the memory while
our code is accessing it, it won't be able to. Then we do all our drawing.

Finally, in the draw method, there is this next line (plus comments) right at the end:

// Display the drawing on screen

// unlockCanvasAndPost is a method of SurfaceHolder

mOurHolder.unlockCanvasAndPost(mCanvas);

The unlockCanvasAndPost method sends our newly decorated Canvas object
(mCanvas) for drawing to the screen and releases the lock so that other areas of code
can use it again – albeit very briefly before the whole process starts again. This process
happens in every single frame of animation.

We now understand the code in the draw method; however, we still don't have the
mechanism that calls the draw method over and over. In fact, we don't even call the draw
method once. We need to talk about game loops and threads.

The game loop
What is a game loop anyway? Almost every live drawing/graphics game has a game
loop. Even games you might suspect do not, such as turn-based games, still need to
synchronize player input with drawing and AI while following the rules of the underlying
operating system.

Telegram Channel @IRFaraExam

544 Threads and Starting the Live Drawing App

There is a constant need to update the objects in the app, perhaps by moving them,
drawing everything in its current position at the same time as responding to user input.
A diagram might help:

Figure 21.2 – Game loop

Our game loop comprises three main phases:

1. Update all game/drawing objects by moving them, detecting collisions, and
processing AI such as the particle movements and state changes.

2. Based on the just-updated data, draw the frame of animation in its latest state.

3. Respond to screen touches from the user.

We already have a draw method for handling that part of the loop. This suggests that
we will have a method to do all the updating as well. We will soon code the outline of an
update method. In addition, we know that we can respond to screen touches although
we will need to adapt slightly from all the previous projects because we are not working
inside an Activity or using conventional UI widgets in a layout anymore.

There is a further issue in that (as I briefly mentioned) all the updating and drawing
happens asynchronously to the detection of screen touches and listening to the
operating system.

Telegram Channel @IRFaraExam

The game loop 545

Note
Just to be clear, asynchronous means that it does not occur at the same time.
Our game code will work by sharing execution time with Android and the user
interface. The CPU will very quickly switch back and forth between our code
and Android/user input.

But how exactly will these three phases be looped through? How will we code this
asynchronous system within which the update and draw methods can be called and
how will we make the loop run at the correct speed (frame rate)?

As we can probably guess, writing an efficient game loop is not as simple as a while loop.

Note
Our game loop will, however, also contain a while loop.

We need to consider timing, starting and stopping the loop, as well as not causing the OS
to become unresponsive because we are monopolizing the entire CPU within our loop.

But when and how do we call our draw method? How do we measure and keep track of
the frame rate? With these things in mind, our finished game loop can probably be better
represented by this next diagram. Notice the introduction of the concept of threads.

Figure 21.3 – Finished game loop

Telegram Channel @IRFaraExam

546 Threads and Starting the Live Drawing App

Now we know what we want to achieve, let's learn about threads.

Threads
So, what is a thread? You can think of threads in programming in the same way you do
threads in a story. In one thread of a story, we might have the primary character battling
the enemy on the frontline while in another thread the soldier's family is getting by, day
to day. Of course, a story doesn't have to have just two threads; we could introduce a third
thread. Perhaps the story also tells of the politicians and military commanders making
decisions. And these decisions then subtly, or not so subtly, affect what happens in the
other threads.

Programming threads are just like this. We create parts/threads in our program that
control different aspects for us. In Android, threads are especially useful when we need
to ensure that a task does not interfere with the main (UI) thread of the app or if we have
a background task that takes a long time to complete and must not interrupt the main
thread of execution. We introduce threads to represent these different aspects because
of the following reasons:

• They make sense from an organizational point of view.

• They are a proven way of structuring a program that works.

• The nature of the system we are working on forces us to use them.

In Android, we use threads for all three reasons simultaneously. It makes sense, it works,
and we must because the design of the Android system requires it.

Often, we use threads without knowing about it. This happens because we use classes
that use threads on our behalf. All the animations we coded in Chapter 19, Animations
and Interpolations, were all running in threads. Another such example in Android is the
SoundPool class, which loads sound in a thread. We will see or rather hear SoundPool
in action in Chapter 23, Supporting Different Versions of Android, Sound Effects, and
Spinner Widget, and we saw and will see again that our code doesn't have to handle the
aspects of threads we are about to learn about because it is all handled internally by the
class. In this project, however, we need to get a bit more involved.

In real-time systems, think about a thread that is receiving the player's button taps for
moving left and right at the same time as listening for messages from the OS such as
calling onCreate (and other methods we will see soon) as one thread, and another
thread that draws all the graphics and calculates all the movement.

Telegram Channel @IRFaraExam

Threads 547

Problems with threads
Programs with multiple threads can have problems. Like the threads of a story in which
if proper synchronization does not occur, things can go wrong. What if our soldier went
into battle before the battle or the war even existed? Weird.

Consider that we have a variable int x that represents a key piece of data that, say, three
threads of our program use. What happens if one thread gets slightly ahead of itself and
makes the data "wrong" for the other two. This problem is the problem of correctness
caused by multiple threads racing to completion oblivious—because after all, they are just
dumb code.

The problem of correctness can be solved by the close oversight of the threads and
locking. Locking means temporarily preventing execution in one thread to be sure things
are working in a synchronized manner – kind of like freezing a soldier from boarding
a ship to war until the ship has docked and the gangplank has been lowered, avoiding an
embarrassing splash.

The other problem with programs with multiple threads is the problem of deadlock where
one or more threads become locked waiting for the "right" moment to access int x, but
that moment never comes, and eventually, the entire program grinds to a halt.

You might have noticed that it was the solution to the first problem (correctness) that is
the cause of the second problem (deadlock).

Fortunately, the problem has been solved for us. Just as we use the Activity class and
override onCreate to know when we need to create our app, we can also use other
classes to create and manage our threads. Just as with Activity, we only need to know
how to use them – not exactly how they work.

So why did I tell you all this stuff about threads when you didn't need to know, you rightly
ask. Simply because we will be writing code that looks different and is structured in an
unfamiliar manner. If we can do the following, then we will have no sweat writing our Java
code to create and work within our threads:

• Understand the general concept of a thread, which is just the same thing as a story
thread, which happens almost simultaneously

• Learn the few rules of using a thread

There are a few different Android classes that handle threads. Different thread classes
work best in different situations.

All we need to remember is that we will be writing parts of our program that run at almost
the same time as each other.

Telegram Channel @IRFaraExam

548 Threads and Starting the Live Drawing App

Note
What do you mean almost? What is happening is that the CPU switches
between threads in turn/asynchronous. However, this happens so fast that
we will not be able to perceive anything but simultaneity/synchronous. Of
course, in the story thread analogy, people do act entirely synchronously.

Let's take a glimpse at what our thread code will look like. Don't add any code to the
project just yet. We can declare an object of type Thread like this:

Thread ourThread;

Initialize and start it like this:

ourThread = new Thread(this);

ourThread.start();

There is one more conundrum to this thread stuff. Look at the constructor that initializes
the thread. Here is the line of code again for your convenience:

ourThread = new Thread(this);

Look at the highlighted argument that is passed to the constructor. We pass in
this. Remember that the code is going inside the LiveDrawingView class, not
LiveDrawingActivity. We can, therefore, surmise that this is a reference to
a LiveDrawingView class (which extends SurfaceView).

It seems very unlikely that when the nerds at Android HQ wrote the Thread class they
would have been aware that one day we would be writing our LiveDrawingView class.
So how can this work?

The Thread class needs an entirely different type to be passed into its constructor. The
Thread constructor needs an object of type Runnable.

Note
You can confirm this fact by looking at the Thread class on the Android
developer's website here: https://developer.android.com/
reference/java/lang/Thread.html#Thread(java.lang.
Runnable).

Telegram Channel @IRFaraExam

https://developer.android.com/reference/java/lang/Thread.html#Thread(java.lang.Runnable
https://developer.android.com/reference/java/lang/Thread.html#Thread(java.lang.Runnable
https://developer.android.com/reference/java/lang/Thread.html#Thread(java.lang.Runnable

Threads 549

Do you remember we talked about interfaces in Chapter 11, More Object-Oriented
Programming? As a reminder, we can implement an interface using the implements
keyword and the interface name after the class declaration, like in this code:

class someClass extends someotherClass implements Runnable{

We must then implement the abstract methods of the interface. Runnable has just one.
It is the run method.

Note
You can confirm this last fact by looking at the Runnable interface on the
Android developer's website here: https://developer.android.
com/reference/java/lang/Runnable.html.

We can then use the Java @override keyword to change what happens when the
operating system allows our thread object to run its code:

class someClass extends someotherClass implements Runnable{

 @override

run(){

 // Anything in here executes in a thread

 // No skill needed on our part

 // It is all handled by Android, the Thread class

 // and the Runnable interface

}

}

Within the overridden run method, we will call two methods: one that we have
started already, draw, and the other is update. The update method is where all our
calculations and artificial intelligence will go. The code will look a bit like this – don't
add it yet:

@override

public void run() {

 // Update the drawing based on

 // user input, physics,

 // collision detection and artificial intelligence

 update();

Telegram Channel @IRFaraExam

https://developer.android.com/reference/java/lang/Runnable.html
https://developer.android.com/reference/java/lang/Runnable.html

550 Threads and Starting the Live Drawing App

 // Draw all the particle systems in their updated

 locations

 draw();

}

When appropriate, we can also stop our thread like this:

ourThread.join();

Now everything that is in the run method is executing in a separate thread, leaving the
default or UI thread to listen for touches and system events. We will see how the two
threads communicate with each other in the drawing project shortly.

Note that exactly where all these parts of the code will go into our app has not been
explained because it is so much easier to show you in the real project.

Implementing the game loop with a thread
Now we have learned about the game loop and threads, we can put it all together to
implement our game loop in the Living Drawing project.

We will add the entire code for the game loop, including writing two methods in the
LiveDrawingActivity class to start and stop the thread, which will control the loop.

Note
Can you guess how the Activity based class will start and stop the thread in the
LiveDrawingView class?

Implementing Runnable and providing the run method
Update the class declaration by implementing Runnable, just like we discussed we would
need to and as shown in this next highlighted code:

class LiveDrawingView extends SurfaceView implements Runnable{

Telegram Channel @IRFaraExam

Implementing the game loop with a thread 551

Notice that we have a new error in the code. Hover the mouse pointer over the word
Runnable and you will see a message informing you that we need to implement the run
method, again, just as we discussed during the discussion on interfaces. Add the empty
run method, including the @override label as shown in a moment.

It doesn't matter where you add it if it is within the LiveDrawingView class's curly
braces and not inside another method. I added mine right after the constructor method
because it is near the top and easy to get to. We will be editing this quite a bit in this
chapter. Add the empty run method as shown next:

// When we start the thread with:

// mThread.start();

// the run method is continuously called by Android

// because we implemented the Runnable interface

// Calling mThread.join();

// will stop the thread

@Override

public void run() {

}

The error is gone and now we can declare and initialize a Thread object.

Coding the thread
Declare some more member variables and instances, as shown next, underneath all our
other members in the LiveDrawingView class:

// Here is the Thread and two control variables

private Thread mThread = null;

// This volatile variable can be accessed

// from inside and outside the thread

private volatile boolean mDrawing;

private boolean mPaused = true;

Now we can start and stop the thread. Have a think about where we might do this.
Remember that the app needs to respond to the operating system starting and stopping
the app.

Telegram Channel @IRFaraExam

552 Threads and Starting the Live Drawing App

Starting and stopping the thread
Now we need to start and stop the thread. We have seen the code we need but when and
where should we do it? Let's write two methods, one to start and one to stop, and then we
can consider further when and from where to call these methods. Add these two methods
inside the LiveDrawingView class. If their names sound familiar, it is not by chance:

// This method is called by LiveDrawingActivity

// when the user quits the app

public void pause() {

 // Set mDrawing to false

 // Stopping the thread isn't

 // always instant

 mDrawing = false;

 try {

 // Stop the thread

 mThread.join();

 } catch (InterruptedException e) {

 Log.e("Error:", "joining thread");

 }

}

// This method is called by LiveDrawingActivity

// when the player starts the app

public void resume() {

 mDrawing = true;

 // Initialize the instance of Thread

 mThread = new Thread(this);

 // Start the thread

 mThread.start();

}

Telegram Channel @IRFaraExam

Implementing the game loop with a thread 553

What is happening is slightly given away by the comments – did you read the comments?
We now have a pause and resume method, which stop and start the Thread object
using the same code we discussed previously.

Notice the new methods are public and therefore accessible from outside the
class to any other class that has an instance of LiveDrawingView. Remember
that LiveDrawingActivity has the fully declared and initialized instance of
LiveDrawingView?

Let's use the Android Activity lifecycle to call these two new methods.

Using the Activity lifecycle to start and stop the thread
Update the overridden onResume and onPause methods in LiveDrawingActivity
as shown next with the highlighted lines of code:

@Override

protected void onResume() {

 super.onResume();

 // More code here later in the chapter

 mLiveDrawingView.resume();

}

@Override

protected void onPause() {

 super.onPause();

 // More code here later in the chapter

 mLiveDrawingView.pause();

}

Now our thread will be started and stopped when the operating system is resuming and
pausing our app. Remember that onResume is called after onCreate the first time an
app is created, not just after resuming from a pause. The code inside onResume and
onPause uses the mLiveDrawingView object to call its resume and pause methods,
which in turn has the code to start and stop the thread. This code then triggers the
thread's run method to execute. It is in this run method (in LiveDrawingView) that
we will code our game loop. Let's do that now.

Telegram Channel @IRFaraExam

554 Threads and Starting the Live Drawing App

Coding the run method
Although our thread is set up and ready to go, nothing happens because the run method
is empty. Code the run method as shown next:

@Override

public void run() {

 // mDrawing gives us finer control

 // rather than just relying on the calls to run

 // mDrawing must be true AND

 // the thread running for the main

// loop to execute

 while (mDrawing) {

 // What time is it now at the start of the loop?

 long frameStartTime = System.currentTimeMillis();

 // Provided the app isn't paused

 // call the update method

 if(!mPaused){

 update();

 // Now the particles are in

 // their new positions

 }

 // The movement has been handled and now

 // we can draw the scene.

 draw();

 // How long did this frame/loop take?

 // Store the answer in timeThisFrame

 long timeThisFrame =

 System.currentTimeMillis() -

 frameStartTime;

 // Make sure timeThisFrame is at least 1

Telegram Channel @IRFaraExam

Implementing the game loop with a thread 555

 // millisecond because accidentally dividing

 // by zero crashes the app

 if (timeThisFrame > 0) {

 // Store the current frame rate in mFPS

 // ready to pass to the update methods of

 // of our particles in the next frame/loop

 mFPS = MILLIS_IN_SECOND / timeThisFrame;

 }

 }

}

Notice there are two errors in Android Studio. This is because we have not written the
update method yet. Let's quickly add an empty method (with a comment) for it. I added
mine after the run method:

private void update() {

 // Update the particles

}

Now let's discuss in detail how the code in the run method achieves the aims of our game
loop by looking at the whole thing a bit at a time.

This first part initiates a while loop with the condition mDrawing and it wraps the rest
of the code inside run so the thread will need to be started (for run to be called) and
mDrawing will need to be true for the while loop to execute:

@Override

public void run() {

 // mPlaying gives us finer control

 // rather than just relying on the calls to run

 // mPlaying must be true AND

 // the thread running for the main

 // loop to execute

 while (mPlaying) {

Telegram Channel @IRFaraExam

556 Threads and Starting the Live Drawing App

The first line of code inside the while loop declares and initializes a local
variable frameStartTime with whatever the current time is. The static method
currentTimeMillis of the System class returns this value. If later, we want to
measure how long a frame has taken, then we need to know what time it started:

 // What time is it now at the start of the loop?

 long frameStartTime = System.currentTimeMillis();

Next, still inside the while loop, we check whether the app is paused and only if the app
is not paused does this next code get executed. If the logic allows execution inside this
block, then update is called:

 // Provided the app isn't paused

 // call the update method

 if(!mPaused){

 update();

 // Now the particles are in

 // their new positions

 }

Outside of the previous if statement, the draw method is called to draw all the objects in
the just-updated positions. At this point, another local variable is declared and initialized
with the length of time it took to complete the entire frame (updating and drawing). This
value is calculated by getting the current time, once again with currentTimeMillis,
and subtracting frameStartTime from it:

 // The movement has been handled and collisions

 // detected now we can draw the scene.

 draw();

 // How long did this frame/loop take?

 // Store the answer in timeThisFrame

 long timeThisFrame =

 System.currentTimeMillis() -

 frameStartTime;

Telegram Channel @IRFaraExam

Implementing the game loop with a thread 557

The next if statement detects whether timeThisFrame is greater than zero. It is
possible for the value to be zero if the thread runs before objects are initialized. If you look
at the code inside the if statement, it calculates the frame rate by dividing the elapsed
time by MILLIS_IN_SECOND. If you divide by zero, the app will crash, which is why we
do the check.

Once mFPS gets the value assigned to it, we can use it in the next frame to pass to the
update method of all the particles, which we will code in the next chapter. They will use
the value to make sure they move by precisely the correct amount based on their target
speed and the length of time the frame has taken:

 // Make sure timeThisFrame is at least 1

 // millisecond because accidentally dividing

 // by zero crashes the app

 if (timeThisFrame > 0) {

 // Store the current frame rate in mFPS

 // ready to pass to the update methods of

 // the particles in the next frame/loop

 mFPS = MILLIS_IN_SECOND / timeThisFrame;

 }

 }

}

The result of the calculation that initializes mFPS in each frame is that mFPS will hold a
fraction of 1. Therefore, when we use this value inside each of the particle objects, we will
be able to use this calculation:

mSpeed / mFPS

In order to determine the elapsed time on any given frame, as the frame rate fluctuates,
mFPS will hold a different value and supply the game objects with the appropriate number
to calculate each move.

Telegram Channel @IRFaraExam

558 Threads and Starting the Live Drawing App

Running the app
Click the play button in Android Studio and the hard work and theory of the last
two chapters will spring to life. Here are the beginnings of our app running on a
tablet emulator:

Figure 21.4 – Running the app

You can see we now have a real-time system created with our game loop and a thread.
If you run this on a real device, you will easily achieve 60 frames per second at this stage.

Telegram Channel @IRFaraExam

Summary 559

Summary
This was probably the most technical chapter so far. Threads, game loops, timing, using
interfaces along with the Activity lifecycle, and so on… it's an awfully long list of topics
to cram in.

If the exact interrelationships between these things are not entirely clear, it is not a
problem. All you need to know is that when the user starts and stops the app, the
LiveDrawingActivity class will handle starting and stopping the thread by calling
the LiveDrawingView class's pause and resume methods. It achieves this via the
overridden onPause and onResume methods, which are called by the OS.

Once the thread is running the code inside, the run method executes alongside the UI
thread that is listening for user input. As we call the update and draw methods from the
run method at the same time as keeping track of how long each frame is taking, our app
is ready to rock and roll.

We just need to allow the user to add some particles to their artwork, which we can then
update in each call to the update method and draw in each call to the draw method.

In the next chapter, we will be coding, updating, and drawing both the Particle and
the ParticleSytem classes. In addition, we will be writing code for the user to interact
(do some drawing) with the app.

Telegram Channel @IRFaraExam

Telegram Channel @IRFaraExam

22
Particle Systems

and Handling Screen
Touches

We already have the real-time system that we implemented in the previous chapter using
a thread. In this chapter, we will create the entities that will exist and evolve in this
real-time system as if they have a mind of their own; they will form the appearance
of the drawings that the user can achieve.

We will also see how the user implements these entities by learning how to respond to
interaction with the screen. This is different to interacting with a widget in a UI layout.

Here is what is coming up in this chapter:

• Adding custom buttons to the screen

• Coding the Particle class

• Coding the ParticleSystem class

• Handling screen touches

• The Android Studio Profiler tool

Telegram Channel @IRFaraExam

562 Particle Systems and Handling Screen Touches

We will start by adding a custom UI to our app.

WARNING
This app produces bright flashing colors. It may cause discomfort or
seizures for people with photosensitive epilepsy. Reader discretion is advised.
You might like to simply read the theory for this project and not run the
completed project.

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2022.

Adding custom buttons to the screen
We need to let the user control when to start another drawing and clear the screen of their
previous work. We need the user to be able to decide if and when to bring the drawing to
life. To achieve this, we will add two buttons to the screen, one for each of the tasks.

Add the members highlighted next in the LiveDrawingView class:

// These will be used to make simple buttons

private RectF mResetButton;

private RectF mTogglePauseButton;

We now have two RectF instances. These objects hold four floating-point coordinates
each, one coordinate for each corner of our two proposed buttons.

Initialize the positions in the constructor of LiveDrawingView:

// Initialize the two buttons

mResetButton = new RectF(0, 0, 100, 100);

mTogglePauseButton = new RectF(0, 150, 100, 250);

Add the import for the RectF class:

import android.graphics.RectF;

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2022
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2022
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2022

Implementing a particle system effect 563

Now we have added actual coordinates for the buttons. If you visualize the coordinates on
the screen, then you will see they are in the top left-hand corner with the pause button just
below the reset/clear button.

Now we can draw the buttons. Add these two lines of code in the draw method of the
LiveDrawingView class:

// Draw the buttons

mCanvas.drawRect(mResetButton, mPaint);

mCanvas.drawRect(mTogglePauseButton, mPaint);

The new code uses an overridden version of the drawRect method, and we simply pass
our two RectF instances straight in alongside the usual Paint instance. Our buttons will
now be drawn to the screen.

We will see how we interact with these slightly crude buttons later in the chapter.

Implementing a particle system effect
A particle system is a system that controls particles. In our case, ParticleSystem is
a class we will write that will spawn instances (lots of instances) of the Particle class
(also a class we will write) that will create a simple explosion-like effect.

Here is an image of some particles controlled by a particle system:

Figure 22.1 – Particle system effect

Telegram Channel @IRFaraExam

564 Particle Systems and Handling Screen Touches

Just for clarification, each of the colored squares is an instance of the Particle class
and all the Particle instances are controlled and held by the ParticleSystem class.
In addition, the user will create multiple (hundreds) of ParticleSystem instances by
drawing with their finger. The particles will appear as dots or blocks until the user taps
the pause button, when they will come to life. We will examine the code closely enough
that you will be able to set, in code, the size, color, speed, and quantity of Particle and
ParticleSystem instances.

Note
It is left as an exercise for the reader to add additional buttons to the screen to
allow the user to change these properties as a feature of the app.

We will start by coding the Particle class.

Coding the Particle class
Add the import statement, the member variables, and the constructor method, as shown
in the following code:

import android.graphics.PointF;

class Particle {

 PointF mVelocity;

 PointF mPosition;

 Particle(PointF direction)

 {

 mVelocity = new PointF();

 mPosition = new PointF();

 // Determine the direction

 mVelocity.x = direction.x;

 mVelocity.y = direction.y;

 }

}

Telegram Channel @IRFaraExam

Implementing a particle system effect 565

We have two members: one for velocity and one for position. They are both PointF
objects. PointF holds two float values. The position is simple; it is just a horizontal and
vertical value. The velocity is worth explaining a little more. Each of the two values in
PointF will be a speed, one horizontal and the other vertical. It is the combination of
these two speeds that will imply a direction.

Note
In the constructor, the two new PointF objects are instantiated and the x
and y values of mVeleocity are initialized with the values passed in by the
PointF direction parameter. Notice the way in which the values are
copied from direction to mVelocity. Now, PointF mVelocity
is not a reference to PointF passed in as a parameter. Each Particle
instance will copy the values from direction (and they will be different for
each instance), but mVelocity has no lasting connection to direction.

Next, add these three methods, and then we can then talk about them:

void update(float fps)

{

 // Move the particle

 mPosition.x += mVelocity.x;

 mPosition.y += mVelocity.y;

}

void setPosition(PointF position)

{

 mPosition.x = position.x;

 mPosition.y = position.y;

}

PointF getPosition()

{

 return mPosition;

}

Perhaps unsurprisingly, there is an update method. Each Particle instance's update
method will be called each frame of the app by the ParticleSystem class' update
method, which in turn will be called by the LiveDrawingView class (again in the
update method), which we will code later in the chapter.

Telegram Channel @IRFaraExam

566 Particle Systems and Handling Screen Touches

Inside the update method, the horizontal and vertical values of mPosition are updated
using the corresponding values of mVelocity.

Note
Notice that we don't bother using the current frame rate in the update. You
could amend this if you want to be certain that your particles will all fly at
exactly the correct speed. But all the speeds are going to be random anyway.
There is not much to gain from adding this extra calculation (for every
particle). As we will soon see, however, the ParticleSystem class will
need to take account of the current frames per second to measure how long it
should run for.

Next, we coded the setPosition method. Notice that the method receives PointF,
which is used to set the initial position. The ParticleSystem class will pass this
position in when the effect is triggered.

Finally, we have the getPosition method. We need this method so that the
ParticleSystem class can draw all the particles in the correct position. We could have
added a draw method to the Particle class instead of the getPosition method and
had the Particle class draw itself. In this implementation, there is no particular benefit
to either option.

Now we can move on to the ParticleSysytem class.

Coding the ParticleSystem class
The ParticleSystem class has a few more details than the Particle class, but it is
still reasonably straightforward. Remember what we need to achieve with this class: hold,
spawn, update, and draw a bunch (quite a big bunch) of Particle instances.

Add the following members and import statements:

import android.graphics.Canvas;

import android.graphics.Color;

import android.graphics.Paint;

import android.graphics.PointF;

import java.util.ArrayList;

import java.util.Random;

Telegram Channel @IRFaraExam

Implementing a particle system effect 567

class ParticleSystem {

 private float mDuration;

 private ArrayList<Particle> mParticles;

 private Random random = new Random();

 boolean mIsRunning = false;

}

We have four member variables: first, a float variable called mDuration that will
be initialized to the number of seconds we want the effect to run for. The ArrayList
instance called mParticles holds Particle instances and will hold all the Particle
objects we instantiate.

The Random instance called random is created as a member because we need to generate
so many random values that creating a new object each time would be sure to slow us
down a bit.

Finally, the mIsRunning Boolean will track whether the particle system is currently
being shown (updating and drawing).

Now we can code the init method. This method will be called each time we want a new
ParticleSystem. Notice that the one and only parameter is an int parameter called
numParticles.

When we call init, we can have some fun initializing crazy amounts of particles. Add the
init method and then we will look more closely at the code:

void init(int numParticles){

 mParticles = new ArrayList<>();

 // Create the particles

 for (int i = 0; i < numParticles; i++){

 float angle = (random.nextInt(360)) ;

 angle = angle * 3.14f / 180.f;

 // Option 1 - Slow particles

 //float speed = (random.nextFloat()/10);

Telegram Channel @IRFaraExam

568 Particle Systems and Handling Screen Touches

 // Option 2 - Fast particles

 float speed = (random.nextInt(10)+1);

 PointF direction;

 direction = new PointF((float)Math.cos(angle) *

 speed, (float)Math.sin(angle) *

 speed);

 mParticles.add(new Particle(direction));

 }

}

The init method consists of just one for loop that does all the work. The for loop runs
from zero to numParticles-1.

First, a random number between zero and 359 is generated and stored in the float
variable called angle. Next, there is a little bit of math and we multiply angle by
3.14/180. This turns the angle in degrees to radian measurements, which are required
by the Math class we will use in a moment.

Then we generate another random number between 1 and 10 and assign the result to
a float variable called speed.

Note
I have added comments to suggest different options for values in this part of
the code. I do this in several places in the ParticleSystem class and when
we get to the end of the chapter, we will have some fun altering these values to
see what effect it has on the drawing app.

Now that we have a random angle and speed, we can convert and combine them into a
vector that can be used inside the update method of the Particle class to update its
position each frame.

Telegram Channel @IRFaraExam

Implementing a particle system effect 569

Note
A vector is a value that determines both direction and speed. Our vector is
stored in the direction object until it is passed into the Particle
constructor. Vectors can be of many dimensions. Ours is of two dimensions
and therefore defines a heading between zero and 359 degrees and a speed
between 1 and 10. You can read more about vectors, headings, sine, and
cosine on my website here: http://gamecodeschool.com/
essentials/calculating-heading-in-2d-games-using-
trigonometric-functions-part-1/.

The single line of code that uses Math.sin and Math.cos to create a vector I have
decided not to explain in full, because the magic occurs partly in the following formulas:

• Cosine of an angle * speed

• Sine of an angle * speed

It also happens partly in the hidden calculations within the cosine and sine functions
provided by the Math class. If you want to know their full details, see the previous tip box.

Finally, a new Particle is created and then added to the mParticles ArrayList
instance.

Next, we will code the update method. Notice that the update method does need the
current frame rate as a parameter. Code the update method shown next:

void update(long fps){

 mDuration -= (1f/fps);

 for(Particle p : mParticles){

 p.update(fps);

 }

 if (mDuration < 0)

 {

 mIsRunning = false;

 }

}

The first thing that happens inside the update method is that the elapsed time is taken
off mDuration. Remember that the fps parameter is the frames per second, so 1/fps
gives a value as a fraction of a second.

Telegram Channel @IRFaraExam

http://gamecodeschool.com/essentials/calculating-heading-in-2d-games-using-trigonometric-functions-part-1/
http://gamecodeschool.com/essentials/calculating-heading-in-2d-games-using-trigonometric-functions-part-1/
http://gamecodeschool.com/essentials/calculating-heading-in-2d-games-using-trigonometric-functions-part-1/

570 Particle Systems and Handling Screen Touches

Next, there is an enhanced for loop that calls the update method for every Particle
instance in the mParticles ArrayList instance.

Finally, the code checks to see if the particle effect has run its course with
if(mDuration < 0), and if it has, it sets mIsRunning to false.

Now we can code the emitParticles method, which will set each Particle instance
running. This is not to be confused with init, which creates all the new particles and
gives them their velocities. The init method will be called once before the user gets to
interact, while the emitParticles method will be called each time the effect needs to
be started as the user draws on the screen.

Add the emitParticles method:

void emitParticles(PointF startPosition){

 mIsRunning = true;

 // Option 1 - System lasts for half a minute

 //mDuration = 30f;

 // Option 2 - System lasts for 2 seconds

 mDuration = 3f;

 for(Particle p : mParticles){

 p.setPosition(startPosition);

 }

}

First, notice that a PointF reference for where all the particles will start is passed in as
a parameter. All the particles will start at exactly the same position and then fan out each
frame based on their individual velocities.

The mIsRunning Boolean is set to true and mDuration is set to 1f, so the effect will
run for one second, and the enhanced for loop calls setPosition for every particle to
move them to the starting coordinates.

The final method for our ParticleSysytem class is the draw method, which will
reveal the effect in all its glory. The method receives a reference to a Canvas instance and
a Paint instance, so it can draw to the same canvas that the LiveDrawingView class
has just locked in its draw method.

Telegram Channel @IRFaraExam

Implementing a particle system effect 571

Add the draw method:

void draw(Canvas canvas, Paint paint){

 for (Particle p : mParticles) {

 // Option 1 - Coloured particles

 //paint.setARGB(255, random.nextInt(256),

 //random.nextInt(256),

 //random.nextInt(256));

 // Option 2 - White particles

 paint.setColor(

 Color.argb(255,255,255,255));

 // How big is each particle?

 float sizeX = 0;

 float sizeY = 0;

 // Option 1 - Big particles

 //sizeX = 25;

 //sizeY = 25;

 // Option 2 - Medium particles

 sizeX = 10;

 sizeY = 10;

 // Option 3 - Tiny particles

 //sizeX = 1;

 //sizeY = 1;

 // Draw the particle

 // Option 1 - Square particles

 //canvas.drawRect(p.getPosition().x,

 //p.getPosition().y,

 //p.getPosition().x + sizeX,

Telegram Channel @IRFaraExam

572 Particle Systems and Handling Screen Touches

 //p.getPosition().y + sizeY,

 //paint);

 // Option 2 - Circle particles

 canvas.drawCircle(p.getPosition().x,

 p.getPosition().y,

 sizeX, paint);

 }

}

An enhanced for loop steps through each of the Particle instances in the
mParticles ArrayList instance. Each Particle, in turn, is drawn using the
drawRect method and the getPosition method. Notice the call to the paint.
setARGB method. You will see that we generate each of the color channels randomly.

Note
Notice in the comments that I have suggested different options for code
changes so we can have some fun when we have finished coding.

We can now start to put the particle system to work.

Spawning particle systems in the
LiveDrawingView class
Add an ArrayList instance full of systems and some more members to keep track of
things. Add the highlighted code in the positions indicated by the existing comments:

// The particle systems will be declared here later

private ArrayList<ParticleSystem>

 mParticleSystems = new ArrayList<>();

private int mNextSystem = 0;

private final int MAX_SYSTEMS = 1000;

private int mParticlesPerSystem = 100;

Import the ArrayList class as follows:

import java.util.ArrayList;

Telegram Channel @IRFaraExam

Implementing a particle system effect 573

We can now keep track of up to 1,000 particle systems with 100 particles in each. Feel free
to play with these numbers.

Note
On a modern device, you can run particles into the millions without any
trouble, but on the emulator, it will struggle with just hundreds of thousands.

Initialize the systems in the constructor by adding this highlighted code:

// Initialize the particles and their systems

for (int i = 0; i < MAX_SYSTEMS; i++) {

 mParticleSystems.add(new ParticleSystem());

 mParticleSystems.get(i).init(mParticlesPerSystem);

}

The code loops through the ArrayList instance, calling the constructor and then the
init method on each of the ParticleSystem instances.

Update the systems for each frame of the loop by adding this highlighted code in the
update method:

private void update() {

 // Update the particles

 for (int i = 0; i < mParticleSystems.size(); i++) {

 if (mParticleSystems.get(i).mIsRunning) {

 mParticleSystems.get(i).update(mFPS);

 }

 }

}

The previous code loops through each of the ParticleSystem instances, first checking
if they are active and then calling the update method and passing in the current frames
per second.

Draw the systems for each frame of the loop by adding this highlighted code to
the draw method:

// Choose a color to paint with

mPaint.setColor(Color.argb(255, 255, 255, 255));

Telegram Channel @IRFaraExam

574 Particle Systems and Handling Screen Touches

// Choose the font size

mPaint.setTextSize(mFontSize);

// Draw the particle systems

for (int i = 0; i < mNextSystem; i++) {

 mParticleSystems.get(i).draw(mCanvas, mPaint);

}

// Draw the buttons

mCanvas.drawRect(mResetButton, mPaint);

mCanvas.drawRect(mTogglePauseButton, mPaint);

The previous code loops through mParticleSystems, calling the draw method on
each. Of course, we haven't actually spawned any instances yet. For that, we will need to
learn how to respond to screen interactions.

Handling touches
To get started, add the OnTouchEvent method to the LiveDrawingView class:

@Override

public boolean onTouchEvent(MotionEvent motionEvent) {

 return true;

}

This is an overridden method and it is called by Android every time the user interacts
with the screen. Look at the one and only parameter of the OnTouchEvent method.

Import the MotionEvent class with this line of code:

import android.view.MotionEvent;

It turns out that motionEvent has a whole bunch of data tucked away inside of it and
this data contains the details of the touch that just occurred. The operating system sent
it to us because it knows we will probably need some of it.

Telegram Channel @IRFaraExam

Handling touches 575

Notice that I said some of it. The MotionEvent class is quite extensive. It contains within
it dozens of methods and variables.

Note
We will uncover a few details of the MotionEvent class in this project.
You can explore the MotionEvent class in full here: https://stuff.
mit.edu/afs/sipb/project/android/docs/reference/
android/view/MotionEvent.html. Note that it is not necessary to
do further research to complete this project.

For now, all we need to know is the screen coordinates at the precise moment when the
player's finger moves across the screen, touches the screen, or is removed from the screen.

Some of the variables and methods contained within motionEvent that we will use
include the following.

• The getAction method, which unsurprisingly "gets" the action that was
performed. Unfortunately, it supplies this information in a slightly encoded format,
which explains the need for some of these other variables.

• The ACTION_MASK variable, which provides a value known as a mask,
which with the help of a little bit more Java trickery can be used to filter the
data from getAction.

• The ACTION_UP variable, which we can use to compare and see if the action
performed is the one we want to respond to (removing a finger from the screen).

• The ACTION_DOWN variable, which we can use to compare and see if the action
performed is the one we want to respond to.

• The ACTION_MOVE variable, which we can use to compare and see if the action
performed is a move/drag.

• The getX method, which tells us a horizontal floating-point coordinate of where
the event happened.

• The getY method, which tells us a vertical floating-point coordinate of where the
event happened.

As a specific example, say we need to filter the data returned by the getAction method
using ACTION_MASK and see if the result is the same as ACTION_UP. If it is, then
we know that the user has just removed their finger from the screen, perhaps because
they just tapped a button. Once we are sure the event is of the correct type, we will need
to find out where it happened using the getX and getY methods.

Telegram Channel @IRFaraExam

https://stuff.mit.edu/afs/sipb/project/android/docs/reference/android/view/MotionEvent.html
https://stuff.mit.edu/afs/sipb/project/android/docs/reference/android/view/MotionEvent.html
https://stuff.mit.edu/afs/sipb/project/android/docs/reference/android/view/MotionEvent.html

576 Particle Systems and Handling Screen Touches

There is one final complication. The "Java trickery" I referred to is the & bitwise operator,
not to be confused with the logical && operator we have been using in conjunction with
the if keyword.

The & bitwise operator checks to see if each corresponding parts in two values are true.
This is the filter that is required when using ACTION_MASK with getAction.

Note
Sanity check. I was hesitant to go into detail about MotionEvent and
bitwise operators. It is possible to complete this entire book and even a
professional-quality interactive app without ever needing to fully understand
them. If you know that the line of code we write in the next section determines
the event type the player has just triggered, that is all you need to know. I just
guessed that a discerning reader such as yourself would like to know the ins
and outs. In summary, if you understand bitwise operators, great, you are
good to go. If you don't, it doesn't matter, you are still good to go. If you are
curious about bitwise operators (there are quite a few), you can read more
about them here: https://en.wikipedia.org/wiki/Bitwise_
operation.

Now we can code the onTouchEvent method and see all the MotionEvent
stuff in action.

Coding the onTouchEvent method
Handle the user moving their finger on the screen by adding this highlighted code inside
the onTouchEvent method to the code we already have:

// User moved a finger while touching screen

 if ((motionEvent.getAction() &

 MotionEvent.ACTION_MASK)

 == MotionEvent.ACTION_MOVE) {

 mParticleSystems.get(mNextSystem).emitParticles(

 new PointF(motionEvent.getX(),

 motionEvent.getY()));

 mNextSystem++;

 if (mNextSystem == MAX_SYSTEMS) {

 mNextSystem = 0;

Telegram Channel @IRFaraExam

https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Bitwise_operation

Handling touches 577

 }

 }

 return true;

Add the following line of code to import the PointF class:

import android.graphics.PointF;

The if condition checks to see if the type of event was the user moving their finger.
If it was, then the next particle system in mParticleSystems has its emitParticles
method called. Afterward, the mNextSystem variable is incremented and a test is done
to see if it was the last particle system. If it was, then mNextSystem is set to zero, ready
to start reusing existing particle systems the next time one is required.

Handle the user pressing one of the buttons by adding this highlighted code right after the
code we just discussed and before the return statement we have already coded:

// Did the user touch the screen

 if ((motionEvent.getAction() &

 MotionEvent.ACTION_MASK)

 == MotionEvent.ACTION_DOWN) {

 // User pressed the screen see if it was in a

 button

 if (mResetButton.contains(motionEvent.getX(),

 motionEvent.getY())) {

 // Clear the screen of all particles

 mNextSystem = 0;

 }

 // User pressed the screen see if it was in a

 button

 if (mTogglePauseButton.contains

 (motionEvent.getX(), motionEvent.getY())) {

 mPaused = !mPaused;

Telegram Channel @IRFaraExam

578 Particle Systems and Handling Screen Touches

 }

 }

 return true;

The condition of the if statement checks to see if the user has tapped the screen. If they
have, then the contains method of the RectF class is used in conjunction with the
getX and getY methods to see if that press was inside one of our custom buttons. If the
reset button was pressed, all the particles will disappear because mNextSystem is set to
zero. If the paused button is pressed, then the value of mPaused is toggled, causing the
update method to stop/start being called in the thread.

Finishing the HUD
Add the highlighted code to the printDebuggingText method:

// We will add more code here in the next chapter

mCanvas.drawText("Systems: " + mNextSystem,

 10, mFontMargin + debugStart + debugSize * 2,

 mPaint);

mCanvas.drawText("Particles: " + mNextSystem *
mParticlesPerSystem,

 10, mFontMargin + debugStart + debugSize * 3,

 mPaint);

This code will print some interesting statistics to the screen to tell us how many particles
and systems are currently being drawn.

WARNING
This app produces bright flashing colors. It may cause discomfort or seizures
for people with photosensitive epilepsy. Reader discretion is advised. You
might like to simply read the theory for this project and not run the completed
project.

Telegram Channel @IRFaraExam

Running the app 579

Running the app
Now we get to see the live drawing app in action and play with some of the different
options we commented out in the code.

Run the app with small, round, colorful, fast particles. Just tap the screen in a few places:

Figure 22.2 – Tap the screen

Then resume drawing:

Figure 22.3 – Tap results

Telegram Channel @IRFaraExam

580 Particle Systems and Handling Screen Touches

Do a kid's-style drawing with small, white, square, slow, long-duration particles:

Figure 22.4 – The kid's-style drawing

Then un-pause the drawing and wait for 20 seconds while the drawing comes to life and
changes:

Figure 22.5 – The kid's-style drawing result

Before we move on to our next project, the Live Drawing app gives us an excellent
opportunity to explore another feature of Android Studio.

Telegram Channel @IRFaraExam

The Android Studio Profiler tool 581

The Android Studio Profiler tool
The Android Studio Profiler tool is quite complex and deep. But it is very simple to use
it to do some really significant measurements with our app. We can see how much of the
device's resources our app is using and therefore attempt to improve the efficiency of our
app to make it run more efficiently and use less in the way of resources. By resources,
I am talking about CPU and memory usage.

Code optimization is beyond the scope of the book, but a look at how we begin to monitor
our app's performance is a good introduction. Select View from the main Android Studio
menu and then select Tool Windows | Profiler.

You will see the following window in the lower area of Android Studio:

Figure 22.6 – Android Studio window

To get started using the Profiler tool, run the Live Drawing app. The Profiler tool should
begin to display graphs and data as shown in the next figure.

Depending on the configuration of your PC firewall software, you might have to allow
access for the Profiler tool to run. In addition, it is possible, but not certain, that you will
have to left-click the + icon in the top left of the Profiler window, as highlighted in the
preceding figure, and then select your AVD for the Profiler tool to connect to:

Figure 22.7 – live graph data

Telegram Channel @IRFaraExam

582 Particle Systems and Handling Screen Touches

In the preceding figure, we can see live graph data for CPU usage, memory usage, network
usage, and energy/battery usage. We will focus on CPU and memory usage.

Hover your mouse over the CPU row and then the MEMORY row to see pop-up details
for each of these metrics. This next figure shows the details on my PC for these two
metrics, photoshopped together:

Figure 22.8 – Pop-up details for each metric

It is possible, even likely, that you will see different values to me. The previous figure shows
that roughly a quarter of the CPU is in use and around 121 MB of RAM is in use.

Next, let's alter our code a little and observe the effect. In the LiveDrawingView class,
edit the initialization of the mParticlesPerSystem member variable:

private int mParticlesPerSystem = 100;

Change it to this:

private int mParticlesPerSystem = 1000;

We have now increased the particle count per system by 10x. We did this to get a spike in
our profiler data, as we will now use the app to draw some particle systems.

When you run the app again, draw a large number of particle systems by moving your
finger/pointer across the screen. Notice that the CPU usage spikes when you draw some
particle systems on the screen, though perhaps not as much as you expected. Mine spiked
to just under 40% while the particles were moving and then settled back down to just over
25%. What might be more surprising if you have never played with a tool like a profiler
before is that the memory usage barely changes at all.

Telegram Channel @IRFaraExam

Summary 583

The reason we got the results that we did is that the calculations of thousands of particles
take up quite significant amounts of CPU. However, drawing particles on the screen does
not require increased memory. The reason for this is that the memory for the app is all
allocated near the start of the execution. Whether or not the particles are currently being
shown to the user is not significant.

This short section was not intended to even scratch the surface of how we might optimize
our graphics or CPU-intensive apps; it was just meant to introduce the idea that you
might like to add optimization to your list of things to investigate further.

Summary
In this chapter, we saw how we can add thousands of self-contained entities to our
real-time system. The entities were controlled by the ParticleSystem class,
which in turn interacted with, and was controlled by, the game loop. As the game loop
was running in a thread, we saw that the user can still interact seamlessly with the
screen, and the operating system sends us the details of these interactions via the
onTouchEvent method.

In the next chapter, our apps will finally get a bit noisier when we explore how to play
sound effects; we'll also learn how to detect different versions of Android.

Telegram Channel @IRFaraExam

Telegram Channel @IRFaraExam

23
Supporting Different
Versions of Android,

Sound Effects, and
Spinner Widget

In this chapter, we will learn how we can detect and handle different versions of Android.
We will then be able to study the SoundPool class and the different ways we use it
depending on the Android version of the device the app is running on. At this point,
we can then put everything we have learned into producing a cool sound demo app,
which will also introduce us to a new UI widget, Spinner.

In summary, in this chapter we will cover the following:

• Learning how to handle different versions of Android

• Learning how to use the Android SoundPool class

• Coding a sound-based app also using the SpinnerView widget

Let's get started.

Telegram Channel @IRFaraExam

586 Supporting Different Versions of Android, Sound Effects, and Spinner Widget

Handling different versions of Android
Most of the time throughout this book, we haven't paid any attention to supporting older
Android devices, the main reason being that all the up-to-date parts of the API we have
been using work on such a high percentage of devices (in excess of 99%) that it has not
seemed worthwhile. Unless you intend on carving out a niche in apps for ancient Android
relics, this seems like a sensible approach. Regarding playing sounds, however, there have
been some relatively recent modifications to the Android API.

Actually, this isn't immediately a big deal because devices newer than this can still use
the old parts of the API. But it is good practice to specifically handle these differences
in compatibility, because eventually, one day, the older parts might not work on newer
versions of Android.

The main reason for discussing this here and now is that the slight differences in pre- and
post-Android Lollipop sound handling give us a good excuse to see how we can deal with
things like this in our code.

We will see how we can make our app compatible with the very latest devices and
pre-Lollipop devices as well.

The class we will be using to make some noise is the SoundPool class. First, let's look at
some simple code for detecting the current Android version.

Detecting the current Android version
We can determine the current version of Android using the static variables of the Build.
Version class and we can determine whether it is newer than a specific version by
comparing it to that version's appropriate Build.VERSION_CODES variable. If that
explanation was a bit of a mouthful, just look at how we determine whether the current
version is equal to or newer (greater) than Lollipop:

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {

 // Lollipop or newer code goes here

} else {

 // Code for devices older than lollipop here

}

Telegram Channel @IRFaraExam

The SoundPool class 587

Now let's see how to make some noise with Android devices newer, and then older,
than Lollipop.

The SoundPool class
The SoundPool class allows us to hold and manipulate a collection of sound
effects – literally, a pool of sounds. The class handles everything from decompressing
a sound file such as a .wav or a .ogg to keeping an identifying reference to it via an
integer ID, and, of course, playing the sound. When the sound is played, it is done so
in a non-blocking manner (using a thread behind the scenes) that does not interfere
with the smooth running of our app or our users' interaction with it.

The first thing we need to do is add the sound effects to a folder called assets in the
main folder of the game project. We will do this for real shortly.

Next, in our Java code, declare an object of the SoundPool type and an int to use
as an ID for each sound effect we intend to use. We also declare another int called
nowPlaying, which we can use to track which sound is currently playing, and we will
see how we do this shortly:

// create an ID

SoundPool sp;

int nowPlaying =-1;

int repeats = 2;

int idFX1 = -1;

float volume = 1;// Volumes rage from 0 through 1

Now we will look at the two different ways we initialize a SoundPool depending upon
the version of Android the device is using. This is the perfect opportunity to use our
method of writing different code for different versions of Android.

Initializing SoundPool the new way
The new way involves us using an AudioAttributes object to set the attributes of the
pool of sound we want.

Telegram Channel @IRFaraExam

588 Supporting Different Versions of Android, Sound Effects, and Spinner Widget

In the first block of code we use chaining and call four separate methods on one object
that initialize our AudioAttributes object (audioAttributes):

// Instantiate a SoundPool dependent on Android version

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {

 // The new way

 // Build an AudioAttributes object

AudioAttributes audioAttributes =

 // First method call

new AudioAttributes.Builder()

// Second method call

 .setUsage

 (AudioAttributes.USAGE_ASSISTANCE_SONIFICATION)

 // Third method call

 .setContentType

 (AudioAttributes.CONTENT_TYPE_SONIFICATION)

 // Fourth method call

 .build();// Yay! A semicolon

 // Initialize the SoundPool

 sp = new SoundPool.Builder()

 .setMaxStreams(5)

 .setAudioAttributes(audioAttributes)

 .build();

}

In the code, we use chaining and the Builder method of this class to initialize an
AudioAttributes object to let it know that it will be used for UI interaction with
USAGE_ASSISTANCE_SONIFICATION.

We also use the CONTENT_TYPE_SONIFICATION value, which lets the class know it is
for responsive sounds, for example, a user button click, a collision, or similar.

Now we can initialize the SoundPool (sp) itself by passing in the AudioAttributes
object (audioAttributes) and the maximum number of simultaneous sounds we are
likely to want to play.

Telegram Channel @IRFaraExam

The SoundPool class 589

The second block of code chains another four methods to initialize sp, including a call to
setAudioAttributes that uses the audioAttributes object that we initialized in
the earlier block of chained methods.

Now we can write an else block of code that will, of course, have the code for the old
way of doing things.

Initializing SoundPool the old way
No need for an AudioAttributes object; simply initialize the SoundPool (sp) by
passing in the number of simultaneous sounds. The final parameter is for sound quality
and passing 0 is all we need to do. This is much simpler than the new way but also less
flexible regarding the choices we can make:

else {

 // The old way

 sp = new SoundPool(5, AudioManager.STREAM_MUSIC, 0);

}

Note
We could use the old way and the newer versions of Android would handle it.
However, we'd get a warning about using deprecated methods. That is what the
official documentation says about it.

Furthermore, the new way gives access to more features, as we saw. And
anyway, it's a good excuse to look at some simple code to handle different
versions of Android.

Now we can go ahead and load up (decompress) the sound files into our SoundPool.

Loading sound files into memory
As with our thread control, we are required to wrap our code in try-catch blocks. This
makes sense because reading a file can fail for reasons beyond our control, but also we are
forced to because the method that we use throws an exception and the code we write will
not compile otherwise.

Inside the try block, we declare and initialize an object of the AssetManager and
AssetFileDescriptor types.

Telegram Channel @IRFaraExam

590 Supporting Different Versions of Android, Sound Effects, and Spinner Widget

The AssetFileDescriptor instance is initialized by using the openFd method of the
AssetManager object, which actually decompresses the sound file. We then initialize
our ID (idFX1) at the same time as we load the contents of AssetFileDescriptor
into our SoundPool.

The catch block just outputs a message to the console to let us know if something has
gone wrong. Note that this code is the same regardless of the Android version:

try{

 // Create objects of the 2 required classes

 AssetManager assetManager = this.getAssets();

 AssetFileDescriptor descriptor;

 // Load our fx in memory ready for use

 descriptor = assetManager.openFd("fx1.ogg");

 idFX1 = sp.load(descriptor, 0);

}catch(IOException e){

 // Print an error message to the console

 Log.d("error", "failed to load sound files");

}

We are ready to make some noise.

Playing a sound
At this point, there is a sound effect in our SoundPool instance and we have an ID by
which we can refer to it.

This code is the same regardless of how we built the SoundPool object and this is how
we play the sound. Notice in the next line of code that we initialize the nowPlaying
variable with the return value from the same method that plays the sound.

Telegram Channel @IRFaraExam

The SoundPool class 591

The following code, therefore, simultaneously plays a sound and loads the value of the
ID that is being played into nowPlaying:

nowPlaying = sp.play(idFX1, volume, volume, 0, repeats, 1);

Note
It is not necessary to store the ID in nowPlaying to play a sound, but it has
its uses as we will now see.

The parameters of the play method are as follows:

• The ID of the sound effect

• The left speaker volume and the right speaker volume

• The priority over other sounds

• The number of times to repeat the sound

• The rate/speed it is played (1 is the normal rate)

Just one more thing before we make the sound demo app.

Stopping a sound
It is also very trivial to stop a sound while it is still playing with the stop method. Note
that there might be more than one sound effect playing at any given time, so the stop
method needs the ID of the sound effect to stop:

sp.stop(nowPlaying);

When you call play, you only need to store the ID of the currently playing sound if you
want to track it so you can interact with it at a later time. As we will see soon, the code to
play a sound in the Pong game will look more like this:

sp.play(mBeepID, 1, 1, 0, 0, 1);

The previous line of code would simply play the chosen sound (mBeepID) at full volume,
with the lowest priority, until it ends with no repeats at the normal speed.

Now we can make the sound demo app.

Telegram Channel @IRFaraExam

592 Supporting Different Versions of Android, Sound Effects, and Spinner Widget

Sound demo app introducing the Spinner
widget
Of course, with all this talk of sound effects, we need some actual sound files. You can
make your own with Bfxr (explained next) or use the ones supplied. The sound effects for
this app are in the download bundle in the assets folder of the Chapter 23/Sound
Demo folder. But you might like to make your own.

Making sound effects
There is an open source app called Bfxr that allows us to make our own sound effects.
Here is a very fast guide to making your own sound effects using Bfxr. Grab a free copy
from www.bfxr.net.

Note
Note that the sound effects for the sound demo app are supplied to you in the
Chapter 23/assets folder. You don't have to create your own sound
effects unless you want to. It is still worth getting this free software and learning
how to use it.

Follow the simple instructions on the website to set it up. Try out a few of these things
to make cool sound effects:

Note
This is a seriously condensed tutorial. You can do so much more with Bfxr. To
learn more, read the tips on the website at the previous URL. If you have any
trouble downloading Bfxr, you can use the website to create all your sound
effects or just use the examples provided.

Telegram Channel @IRFaraExam

http://www.bfxr.net

Sound demo app introducing the Spinner widget 593

1. Run Bfxr:

Figure 23.1 – Bfxr page

Telegram Channel @IRFaraExam

594 Supporting Different Versions of Android, Sound Effects, and Spinner Widget

2. Try out all the preset types that generate a random sound of that type. When you
have a sound that is close to what you want, move on to the next step:

Figure 23.2 – Different effects

3. Use the sliders to fine-tune the pitch, duration, and other aspects of your
new sound:

Figure 23.3 – Fine-tune your sound

Telegram Channel @IRFaraExam

Sound demo app introducing the Spinner widget 595

4. Save your sound by clicking the Export Wav button. Despite the text of this button,
as we will see, we can save in formats other than .wav too:

Figure 23.4 – The Export Wav button

5. Android works very well with sounds in the OGG format, so when asked to name
your file, use the .ogg extension at the end of the filename.

6. Repeat steps 2 to 5 to create three cool sound effects. Name them fx1.ogg, fx2.
ogg, and fx3.ogg. We use the .ogg file format as it is more compressed than
formats such as WAV.

Once you have your sound files ready, we can proceed with the app.

Laying out the sound demo
I will describe the parts of the project we are getting used to a little more concisely
than in previous projects. Every time there is a new concept, however, I will be sure
to explain it in full. I guess by now you will be fine with dragging a few widgets onto
a ConstraintLayout and changing their text properties.

Complete the following steps. If you have any problems at all, you can copy or view the
code in the Chapter 23 folder of the download bundle:

1. Create a new project, call it Sound Demo, choose the Empty Activity template,
leave all the other settings at their defaults, and delete the Hello world! TextView
from the activity_main.xml file.

Telegram Channel @IRFaraExam

596 Supporting Different Versions of Android, Sound Effects, and Spinner Widget

2. Now we will build a layout in the activity_main.xml file, so be sure to be
in design view. In this order, from top to bottom then left to right, drag a Spinner
from the Containers category, a SeekBar (discrete) from the Widgets category,
and four Buttons from the palette onto the layout, arranging and resizing them
and setting their text properties as shown in the next screenshot:

Figure 23.5 – Building a layout in the activity_main.xml file

3. Click the Infer Constraints button.

4. Use the following table to set their properties:

Telegram Channel @IRFaraExam

Sound demo app introducing the Spinner widget 597

5. Next, add the following highlighted code to the strings.xml file in the values
folder. We used this array of string resources that is named spinner_options for
the options property in the previous step. It will represent the options that can be
chosen from our Spinner widget:

<resources>

 <string name="app_name">Sound Demo</string>

 <string name="hello_world">Hello world!</string>

 <string-array name="spinner_options">

 <item>0</item>

 <item>1</item>

 <item>3</item>

 <item>5</item>

 <item>10</item>

 </string-array>

 </resources>

Run the app now and you will not initially see anything that we haven't seen before.
If you click on the spinner, however, you will see the options from our string array called
spinner_options. We can use the spinner to control the number of times a sound
effect repeats when played:

Figure 23.6 – spinner_options

Telegram Channel @IRFaraExam

598 Supporting Different Versions of Android, Sound Effects, and Spinner Widget

Let's write the Java code to make this app work, including how we interact with our
spinner.

Using your operating system's file browser, go to the app\src\main folder of the project
and add a new folder called assets.

There are three sound files ready-made for you in the Chapter 23/assets folder
of the download bundle. Place these three files into the assets directory you just created
or use the ones you created yourself. The important thing is that their filenames are fx1.
ogg, fx2.ogg, and fx3.ogg.

Coding the sound demo
First, we will change the class declaration so we can handle interaction with all our
widgets efficiently. Edit the declaration to implement View.OnClickListener as
highlighted next:

public class MainActivity extends AppCompatActivity

implements View.OnClickListener {

We will add the required onClick method shortly.

Now, we add some member variables for our SoundPool, sound effect IDs,
nowPlaying int as previously discussed, and we will also add a float to hold a value
for volume between 0 (silent) and 1 (full volume relative to the current volume of the
device). We'll also add an int called repeats that unsurprisingly holds the value of the
number of times we will repeat a given sound effect:

SoundPool sp;

int idFX1 = -1;

int idFX2 = -1;

int idFX3 = -1;

int nowPlaying = -1;

float volume = .1f;

int repeats = 2;

Telegram Channel @IRFaraExam

Sound demo app introducing the Spinner widget 599

Now, in the onCreate method, we can get a reference and set a click listener for our
buttons in the usual way. Add the following code to the project:

Button buttonFX1 = findViewById(R.id.btnFX1);

buttonFX1.setOnClickListener(this);

Button buttonFX2 = findViewById(R.id.btnFX2);

buttonFX2.setOnClickListener(this);

Button buttonFX3 = findViewById(R.id.btnFX3);

buttonFX3.setOnClickListener(this);

Button buttonStop = findViewById(R.id.btnStop);

buttonStop.setOnClickListener(this);

Still in onCreate, we can initialize our SoundPool (sp) based on the version of
Android that the device is using. Add the following code to the project:

// Instantiate our SoundPool based on the version of Android

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {

 AudioAttributes audioAttributes =

 new AudioAttributes.Builder()

 .setUsage(AudioAttributes.

 USAGE_ASSISTANCE_SONIFICATION)

 .setContentType(

 AudioAttributes.CONTENT_TYPE_SONIFICATION)

 .build();

 sp = new SoundPool.Builder()

 .setMaxStreams(5)

 .setAudioAttributes(audioAttributes)

 .build();

} else {

 sp = new SoundPool(5, AudioManager.STREAM_MUSIC, 0);

}

Telegram Channel @IRFaraExam

600 Supporting Different Versions of Android, Sound Effects, and Spinner Widget

Note
Add the following import statements for the previous code using your
preferred method:

import android.media.AudioAttributes;

import android.media.AudioManager;

import android.media.SoundPool;

import android.os.Build;

import android.view.View;

import android.widget.Button;

Next, we load each of our sound effects in turn and initialize our IDs with a value that
points to the related sound effect that we load into the SoundPool. The whole thing is
wrapped in a try-catch block as required. Add the following code to the project:

try{

 // Create objects of the 2 required classes

 AssetManager assetManager = this.getAssets();

 AssetFileDescriptor descriptor;

 // Load our fx in memory ready for use

 descriptor = assetManager.openFd("fx1.ogg");

 idFX1 = sp.load(descriptor, 0);

 descriptor = assetManager.openFd("fx2.ogg");

 idFX2 = sp.load(descriptor, 0);

 descriptor = assetManager.openFd("fx3.ogg");

 idFX3 = sp.load(descriptor, 0);

}catch(IOException e){

 // Print an error message to the console

 Log.e("error", "failed to load sound files");

}

Telegram Channel @IRFaraExam

Sound demo app introducing the Spinner widget 601

Note
Add the following import statements for the previous code using your
preferred method:

import android.content.res.AssetFileDescriptor;

import android.content.res.AssetManager;

import android.util.Log;

import java.io.IOException;

Then we see how we are going to handle the SeekBar widget. As you probably have come
to expect, we will use an anonymous class. We use the OnSeekBarChangeListener
class and override the onProgressChanged, onStartTrackingTouch, and
onStopTrackingTouch methods.

We only need to add code to the onProgressChanged method. Within this method,
we simply change the value of our volume variable and then use the setVolume method
on our SoundPool object, passing in the currently playing sound effect and the volume
of the left and right channels of sound. Add the following code to the project:

// Now setup the seekbar

SeekBar seekBar = findViewById(R.id.seekBar);

seekBar.setOnSeekBarChangeListener(new SeekBar.
OnSeekBarChangeListener() {

 @Override

 public void onProgressChanged(SeekBar seekBar,

 int value, boolean fromUser) {

 volume = value / 10f;

 sp.setVolume(nowPlaying, volume, volume);

 }

 @Override

 public void onStartTrackingTouch(SeekBar seekBar) {

 }

 @Override

Telegram Channel @IRFaraExam

602 Supporting Different Versions of Android, Sound Effects, and Spinner Widget

 public void onStopTrackingTouch(SeekBar seekBar) {

 }

});

Note
Add the following import statement for the previous code using your
preferred method:

import android.widget.SeekBar;

After the SeekBar code comes the Spinner code and another anonymous class to
handle user interaction. We use AdapterView.OnItemSelectedListener to
override the onItemSelected and onNothingSelected methods.

All our code goes in the onItemSelected method, which creates a temporary string
named temp and then uses the Integer.ValueOf method to convert the string into
an int, which we can use to initialize the repeats variable. Add the following code to
the project:

// Now for the spinner

final Spinner spinner = (Spinner) findViewById(R.id.spinner);

spinner.setOnItemSelectedListener(

new AdapterView.OnItemSelectedListener() {

 @Override

 public void onItemSelected(AdapterView<?>

 parentView, View selectedItemView,

 int position, long id) {

 String temp = String.valueOf(

 spinner.getSelectedItem());

 repeats = Integer.valueOf(temp);

 }

 @Override

 public void onNothingSelected(AdapterView<?> parentView) {

Telegram Channel @IRFaraExam

Sound demo app introducing the Spinner widget 603

 }

});

Note
Add the following import statements for the previous code using your
preferred method:

import android.widget.AdapterView;

import android.widget.Spinner;

That's everything from onCreate.

Now implement the onClick method, which is required because this class implements
the View.OnClickListener interface. Quite simply, there is a case statement for
each button. There is a case statement to play each of our three sound effects, set the
volume, and set the number of times to repeat. Notice that the return value for each call
to play is stored in nowPlaying. When the user presses the STOP button, we simply
call stop with the current value of nowPlaying, causing the most recently started
sound effect to stop. Add the following code to the project:

@Override

public void onClick(View v) {

 switch (v.getId()){

 case R.id.btnFX1:

 sp.stop(nowPlaying);

 nowPlaying = sp.play(idFX1, volume,

 volume, 0, repeats, 1);

 break;

 case R.id.btnFX2:

 sp.stop(nowPlaying);

 nowPlaying = sp.play(idFX2,

 volume, volume, 0, repeats, 1);

 break;

 case R.id.btnFX3:

 sp.stop(nowPlaying);

 nowPlaying = sp.play(idFX3,

Telegram Channel @IRFaraExam

604 Supporting Different Versions of Android, Sound Effects, and Spinner Widget

 volume, volume, 0, repeats, 1);

 break;

 case R.id.btnStop:

 sp.stop(nowPlaying);

 break;

 }

}

We can now run the app. Make sure the volume on your device is turned up if you can't
hear anything.

Click the appropriate button for the sound effect you want to play. Change the volume and
the number of times it is repeated and, of course, try stopping it with the STOP button.

Also note you can repeatedly tap multiple play buttons when a sound effect is already
playing, and the sounds will be played simultaneously up to the maximum number of
streams (5) that we set.

Summary
In this chapter, we looked closely at the SoundPool class, including how we can detect
which version of Android the user has and vary our code accordingly. Then, we used all
this knowledge to complete the sound demo app.

In the next chapter, we will learn how to make our apps work with multiple different
layouts.

Telegram Channel @IRFaraExam

24
Design Patterns,

Multiple Layouts,
and Fragments

We have come a long way since the start when we were just setting up Android Studio.
Back then, we went through everything step by step, but as we have proceeded we have
tried to show not just how to add x to y or feature a to app b, but to enable you to use what
you have learned in your own ways to bring your own ideas to life.

At first glance, this chapter might seem dry and technical, but this chapter is more about
your future apps than anything in the book so far. We will look at a few aspects of Java
and Android that you can use as a framework or template to make evermore exciting
and complex apps at the same time as keeping the code manageable. This is the key to
successful modern apps. Furthermore, I will suggest areas of further study that there is
simply not enough room to even scratch the surface of in this book.

Telegram Channel @IRFaraExam

606 Design Patterns, Multiple Layouts, and Fragments

In this chapter, we will learn about the following:

• Patterns and model-view-controller

• Android design guidelines

• Getting started with real-world designs and handling multiple different devices

• An introduction to Fragments

Let's get started.

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2024.

Introducing the model-view-controller pattern
The model-view-controller pattern involves the separation of different aspects of our app
into distinct parts called layers. Android apps commonly use the model-view-controller
pattern. A pattern is simply a recognized way to structure our code and other application
resources such as layout files, images, databases, and so on.

Patterns are useful to us because by conforming to a pattern, we can be more confident we
are doing things right and are less likely to have to undo lots of hard work because we have
coded ourselves into an awkward situation.

There are many patterns in computer science but an understanding of model-view-
controller (MVC) will be enough to create some professionally built Android apps.

We have been partly using MVC already, so let's look at each of the three layers in turn:

• Model: Model refers to the data that drives our app and any logic/code that
specifically manages it and makes it available to the other layers. For example, in our
Note to Self app, the Note class along with its getters, setters, and JSON code was
the data and logic.

• View: The view of the Note to Self app was all the widgets in all the different layouts.
Anything the user can see or interact with on the screen is typically part of the view.
And you probably remember that the widgets came from the View class hierarchy
of the Android API.

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2024
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2024
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2024

Android design guidelines 607

• Controller: The controller is the bit in between the view and the model. It interacts
with both and keeps them separate. It contains what is known in geek speak as the
application logic. If a user taps a button, the application layer decides what to do
about it. When the user clicks OK to add a new note, the application layer listens
for the interaction on the view layer. It captures the data contained in the view and
passes it to the model layer.

Note
Design patterns are a huge topic. There are many different design patterns and
if you want a beginner-friendly introduction to the topic in general, I would
recommend Head First Design Patterns. If you want to really dive into the
world of design patterns, then you can try Design Patterns: Elements of Reusable
Object-Oriented Software, which is recognized as a kind of design pattern
oracle but is much harder reading.

As the book progresses, we will also begin to utilize more of the object-oriented
programming aspects we have discussed but not fully benefited from so far. We will do
so step by step.

Android design guidelines
App design is a vast topic. It is a topic that could only begin to be taught in a book of its
own. Also, like programming, you can only start to get good at app design with constant
practice, review, and improvement.

So, what exactly do I mean by design? I am talking about where you put the widgets on
the screen, which widgets, what color should they be, how big should they be, how to
transition between screens, the best way to scroll a page, when and which animation
interpolators to use, what screens your app should be divided into, and much more
besides.

This book will hopefully leave you well qualified to be able to implement all your choices
for the above questions. It unfortunately doesn't have the space, and the author probably
doesn't have the skill, to teach you how to make those choices.

Note
You might be wondering, "What should I do?" Keep making apps and don't
let a lack of design experience and knowledge stop you! Even release your
apps to the app store. Keep in mind, however, that there is this whole other
topic – design – that needs some attention if your apps are going to truly be
world-class.

Telegram Channel @IRFaraExam

608 Design Patterns, Multiple Layouts, and Fragments

In even medium-sized development companies, the designer is rarely also the
programmer, and even very small companies will often outsource the design of their app
(or designers might outsource the coding).

Designing is both art and science, and Google has demonstrated that they recognize this
with high-quality support for both existing designers and aspiring new designers.

Note
I highly recommend you visit and bookmark this web page: https://
developer.android.com/design/. It is quite detailed and
comprehensive, is totally Android focused, and has a load of resources in the
form of images, color palettes, and guidelines.

Make understanding design principles a short-term goal. Make improving your actual
design skills an ongoing task. Visit and read design-focused websites and try and
implement the ideas that you find exciting.

Most important of all, however, don't wait until you are a design expert to make apps.
Keep bringing your ideas to life and publishing them. Make a point of making each
app a little better designed than the last.

We will see in the coming chapters and have seen already, that the Android API makes
available to us a whole bunch of super-stylish UIs that we can take advantage of with very
little code or design skill. These UIs go a long way to making your apps look like they have
been designed by a professional.

Real-world apps
So far, we have built a dozen or more apps of various complexity. Most of them we
designed and tested on a phone.

Of course, in the real world, our apps need to work well on any device and must be able
to handle what happens when in either portrait or landscape view (on all devices).

Furthermore, it is often not enough for our apps to just work and look "OK" on different
devices. Often, our apps will need to behave differently and appear with a significantly
different UI based on whether the device is a phone or a tablet, and in landscape/portrait
orientation.

Telegram Channel @IRFaraExam

https://developer.android.com/design/
https://developer.android.com/design/

Real-world apps 609

Note
Android supports apps for large screen TVs, smartwatches via the Wear API,
virtual reality and augmented reality, as well as "things" for the Internet of
Things. We will not be covering the two latter cases in this book, but by the end
of the book, it is the author's guess that you will be prepared enough to venture
into these topics should you choose to.

Look at this screenshot of the BBC weather app running on an Android phone in portrait
orientation. Look at the basic layout but also study the information shown as we will
compare it to the tablet app in a moment:

Figure 24.1 – BBC weather app running on an Android phone in portrait orientation

Telegram Channel @IRFaraExam

610 Design Patterns, Multiple Layouts, and Fragments

For now, the purpose of the previous screenshot is not so much to show you the specific
UI features but to allow you to compare it with the next screenshot. Look at the exact
same app running on a tablet in landscape orientation:

Figure 24.2 – BBC weather app running on an Android phone in landscape orientation

Notice that the tablet UI has an extra panel of information compared to the phone app.
This extra panel is highlighted in the preceding screenshot.

The point of this screenshot again is not so much the specific UI or even how we
might implement one like it, but more that the UIs are so different they could easily
be considered totally different apps. Yet if you download this app, it is the same download
for tablet and phone.

Android allows us to design real-world apps like this where not only is the layout different
for varying device types/orientations/sizes but also (and this is important) the behavior is
different. The Android secret weapon that makes this possible is Fragments.

Telegram Channel @IRFaraExam

Device detection mini-app 611

Google says:
"A Fragment represents a behavior or a portion of user interface in an Activity.
You can combine multiple fragments in a single activity to build a multi-pane
UI and reuse a fragment in multiple activities.

You can think of a fragment as a modular section of an activity, which has its
own lifecycle, receives its own input events, and which you can add or remove
while the activity is running (sort of like a "sub activity" that you can reuse in
different activities).

A fragment must always be embedded in an activity and the fragment's
lifecycle is directly affected by the host activity's lifecycle."

We can design multiple different layouts in different XML files and we will do so soon.
We can also detect things such as device orientation and screen resolution in our Java
code, so we can then make decisions about layout, dynamically.

Let's try this out using device detection and then we will have our first look at Fragments.

Device detection mini-app
The best way to learn about detecting and responding to devices and their varying
attributes (screens, orientations, and so on) is to make a simple app:

1. Create a new Empty Activity project and call it Device Detection. Leave
all the other settings as their defaults.

2. Open the activity_main.xml file in the design tab and delete the default
Hello world! TextView.

3. Drag a Button onto the top of the screen and set its onClick property to
detectDevice. We will code this method in a minute.

4. Drag two TextView widgets onto the layout, one below the other, and set their
id properties to txtOrientation and txtResolution.

Telegram Channel @IRFaraExam

612 Design Patterns, Multiple Layouts, and Fragments

5. Check you have a layout that looks something like this next screenshot:

Note
I have stretched my widgets (mainly horizontally) and increased the
textSize attributes to 24sp to make them clearer on the screen, but this is
not required for the app to work correctly.

Figure 24.3– Layout check

6. Click the Infer Constraints button to secure the positions of the UI elements.

Now we will do something new. We will build a layout specifically for landscape
orientation.

In Android Studio, make sure the activity_main.xml file is selected in the editor and
locate the Orientation for preview button as shown next:

Figure 24.4 – Create Landscape Variation

Telegram Channel @IRFaraExam

Device detection mini-app 613

Click it and then select Create Landscape Variation.

You now have a new layout XML file with the same name but orientated in landscape
mode. The layout appears blank in the editor, but as we will see, this is not the case. Look
at the layout folder in the Project Explorer and notice that there are indeed two files
named activity_main, and one of them (the new one we just created) is postfixed
with land. This is shown in the next screenshot:

Figure 24.5 – activity_main folder

Select this new file (the one postfixed with land) and now look at the component tree.
It is pictured in the next screenshot:

Figure 24.6 – Component tree

It would appear that the layout already contains all our widgets – we just cannot see them
in the design view. The reason for this anomaly is that when we created the landscape
layout, Android Studio copied the portrait layout, including all the constraints. The
portrait constraints rarely match the landscape constraints.

Telegram Channel @IRFaraExam

614 Design Patterns, Multiple Layouts, and Fragments

To solve the problem, click the Remove all constraints button; it's the button to the left
of the Infer constraints button. The UI is now unconstrained. All the UI widgets will
appear jumbled up in the top-left corner. One at a time, rearrange them to look like this
next screenshot. I had to add the constraints manually to make this design work so I have
shown the constraints in the following screenshot:

Figure 24.7 – Add the constraints

Click the Infer constraints button or set them manually, whichever works best for
you. If you have any trouble recreating this layout, then you can grab the code from the
download bundle in the Chapter 24/Device Detection/layout-land folder.

Note
The appearance doesn't really matter as long as you can see the contents of both
TextView widgets and click the button.

Now we have a basic layout for two different orientations, we can turn our attention to
coding the Java.

Telegram Channel @IRFaraExam

Device detection mini-app 615

Coding the MainActivity class
Add the following member variables just after the MainActivity class declaration,
to hold references to our two TextView widgets:

private TextView txtOrientation;

private TextView txtResolution;

Note
Import the TextView class at this point:

import android.widget.TextView;

Now, in the onCreate method of the MainActivity class, just after the call to
setContentView, add this code:

// Get a reference to our TextView widgets

txtOrientation = findViewById(R.id.txtOrientation);

txtResolution = findViewById(R.id.txtResolution);

After onCreate, add the method that handles our button click and runs our detection
code:

public void detectDevice(View v){

 // What is the orientation?

 Display display =

 getWindowManager().getDefaultDisplay();

 txtOrientation.setText("" + display.getRotation());

 // What is the resolution?

 Point xy = new Point();

 display.getSize(xy);

 txtResolution.setText("x = " + xy.x + " y = " + xy.y);

}

Telegram Channel @IRFaraExam

616 Design Patterns, Multiple Layouts, and Fragments

Note
Import the following three classes:

import android.graphics.Point;

import android.view.Display;

import android.view.View;

This code works by declaring and initializing an object of type Display called display.
This object (display) now holds a whole bunch of data about the specific display
properties of the device.

The result of the getRotation method is output into the top TextView widget.

The code then initializes an object of type Point called xy. The getSize method then
loads up the screen resolution into xy. The setText method is then used to output the
horizontal (xy.x) and vertical (xy.y) resolution into the TextView widget.

Note
You might remember we used the Display and Point classes in the Kids
drawing app.

Each time the button is clicked, the two TextView widgets will be updated.

Unlocking the screen orientation
Before we run the app, we want to make sure the device isn't locked in portrait mode
(most new phones are by default). From the app drawer of the emulator (or the device
you will be using), tap the Settings app and choose Display and use the switch to set
Auto-rotate screen to on. I have shown this setting in the next screenshot:

Telegram Channel @IRFaraExam

Device detection mini-app 617

Figure 24.8 – Auto-rotate screen

Running the app
Now you can run the app and click the button:

Figure 24.9 – Click the button

Telegram Channel @IRFaraExam

618 Design Patterns, Multiple Layouts, and Fragments

Rotate the device, using one of the rotate buttons on the emulator control panel,
to landscape:

Figure 24.10 – Rotate the device

Note
You can also use Ctrl + F11 on a PC or Ctrl + FN + F11 on Mac.

Now click the button again and you will see the landscape layout in action:

Figure 24.11 – Landscape layout

The first thing you will probably notice is that when you rotate the screen, it briefly goes
blank. This is the Activity restarting and calling the onCreate method again – just what
we need. It calls the setContentView method on the landscape version of the layout
and the code in MainActivity refers to widgets with the same ID so the exact same
code works.

Telegram Channel @IRFaraExam

Configuration qualifiers 619

Note
Don't spend too long pondering this because we will discuss it later in
the chapter.

If the 0 and 1 results are less than obvious regarding device orientation, they refer to
public static final variables of the Surface class – Surface.ROTATION_0
equals 0 and Surface.ROTATION_180 equals 1.

Note
Note that if you rotated the screen to the left, then your value will be 1 – the
same as mine, but if you rotated it to the right, you would have seen the value 3.
If you rotate the device to portrait mode upside down, you will get the value 4.

And we could code a switch block based on the results of these detection tests and load
up different layouts.

But as we have just seen, Android makes this simpler than this for us by allowing us
to add specific layouts into folders with configuration qualifiers, such as land, short
for Landscape.

Configuration qualifiers
We have already met configuration qualifiers such as layout-large and layout-
xhdpi in Chapter 3, Exploring Android Studio and the Project Structure. Here, we will
refresh and expand our understanding of them.

We can begin to remove reliance on the controller layer to influence app layout by using
configuration qualifiers. There are configuration qualifiers for size, orientation, and pixel
density. To take advantage of a configuration qualifier, we simply design a layout in the
usual way, optimized for our preferred configuration, and then place that layout in a folder
with a name that Android recognizes as being for that particular configuration.

For example, in the previous app, putting a layout in the land folder tells Android to use
the layout when the device is in the landscape orientation.

Telegram Channel @IRFaraExam

620 Design Patterns, Multiple Layouts, and Fragments

It is likely that the above statement will seem slightly ambiguous. This is because the
Android Studio Project Explorer window shows us a file and folder structure that doesn't
exactly correspond to reality – it is trying to simplify things and "help" us. If you select the
Project Files option from the drop-down list at the top of the Project Explorer window
and then examine the project contents, you will indeed see that there is a layout and
layout-land folder as shown next:

Figure 24.12 – layout and layout-land folder

Switch back to the Android view or leave it on the Project Files view – whichever
you prefer.

So, if we want to have a different layout for landscape and portrait, we would create
a folder called layout-land in the res folder (or use the shortcut we used in the
previous app) and place our specially designed layout within it.

When the device is in portrait position, the regular layout from the layout folder will
be used and when it is in landscape position, the layout from the layout-land folder
would be used.

If we are designing for different sizes of screen, we place layouts into folders with the
following names:

• layout-small

• layout-normal

• layout-large

• layout-xlarge

Telegram Channel @IRFaraExam

Configuration qualifiers 621

If we are designing for screens with different pixel densities, we can place XML layouts
into folders with names like these:

• layout-ldpi for low-DPI devices

• layout-mdpi for medium-DPI devices

• layout-hdpi for high-DPI devices

• layout-xhdpi for extra-high DPI devices

• layout-xxhdpi for extra-extra-high DPI devices

• layout-xxxhdpi for extra-extra-extra-high DPI devices

• layout-nodpi for devices with a DPI you have not otherwise catered for

• layout-tvdpi for TVs

What exactly qualifies as low, high, or extra-high DPI and so on can be researched at the
link in the next info box. The point here is the principal.

It is worth pointing out that what we have just discussed is a long way from being the
whole story regarding configuration qualifiers and, as with design, it is worth putting this
on your list of things to study further.

Note
Often, the Android developer site has lots of detailed information on
handling layouts for different devices. Try this link for more information:
https://developer.android.com/guide/practices/
screens_support.

The limitation of configuration qualifiers
What the previous app and our discussion on configuration qualifiers have shown us is
certainly very useful in a number of situations. Unfortunately, however, configuration
qualifiers and detecting attributes in code only solves the problem in the view layer of
our MVC pattern.

As discussed, our apps sometimes need to have different behavior as well as layout.
This perhaps implies multiple branches of our Java code in the controller layer
(MainActivity in most of our previous apps) and perhaps summons nightmarish
visions of having huge great if or switch blocks with different code for each
different scenario.

Telegram Channel @IRFaraExam

https://developer.android.com/guide/practices/screens_support
https://developer.android.com/guide/practices/screens_support

622 Design Patterns, Multiple Layouts, and Fragments

Fortunately, this is not how it's done. For such situations, in fact for most apps, Android
has fragments.

Fragments
Fragments will likely become a staple of almost every app you make. They are so useful,
there are so many reasons to use them, and once you get used to them, they are so simple,
there is almost no reason not to use them.

Fragments are reusable elements of an app just like any class, but as mentioned previously,
they have special features, such as the ability to load their own view/layout as well as
their very own lifecycle methods, which make them perfect for achieving the goals
we discussed in the Real-world apps section and having different layouts and code for
different devices (like the weather app we looked at).

Let's dig a bit deeper into fragments, one feature at a time.

Fragments have a lifecycle too
We can set up and control fragments very much like we do Activities, by overriding the
appropriate lifecycle methods:

• onCreate: In the onCreate method, we can initialize variables and do almost
all the things we would typically have done in the Activity onCreate method.
The big exception to this is initializing our UI.

• onCreateView: In this method, we will, as the name suggests, get a reference
to any of our UI widgets, set up anonymous classes to listen for clicks, and more
besides, as we will soon see.

• onAttach and onDetach: These methods are called just before Fragment is put
into use/taken out of use.

• onResume, onStart, onPause, and onStop: In these methods, we can take
certain actions, such as creating or deleting objects or saving data, just like we have
done with their Activity based counterparts.

Note
If you want to study the details of the Fragment lifecycle, you can do so
on the Android developer website at this link: https://developer.
android.com/guide/components/fragments.

Telegram Channel @IRFaraExam

https://developer.android.com/guide/components/fragments
https://developer.android.com/guide/components/fragments

Fragments 623

This is all fine, but we need a way to create our fragments in the first place and to be able
to call these methods at the right time.

Managing Fragments with FragmentManager
The FragmentManager class is part of the Activity. We use it to initialize a
Fragment, add Fragments to the Activities layout, and to end a Fragment. We briefly
saw FragmentManager before when we initialized our FragmentDialog.

Note
It is very hard to learn much about Android without bumping into the
Fragment class, just as it is tough to learn much about Java without
constantly bumping into OOP/classes, and so on.

The following highlighted code shows how we used FragmentManager (which is
already a part of Activity) being passed in as an argument to create the pop-up dialog:

button.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 // Create a new DialogShowNote called dialog

 DialogShowNote dialog = new DialogShowNote();

 // Send the note via the sendNoteSelected method

 dialog.sendNoteSelected(mTempNote);

 // Create the dialog

 dialog.show(getFragmentManager(), "123");

 }

});

At the time, I asked you not to concern yourself with the arguments of the method call.
The second argument of the method call is an ID for Fragment. We will see how we use
FragmentManager more extensively, as well as how to use the Fragment ID.

Telegram Channel @IRFaraExam

624 Design Patterns, Multiple Layouts, and Fragments

FragmentManager does exactly what its name suggests. What is important here is that
Activity only has one FragmentManager, but it can take care of many fragments.
This is just what we need to have multiple behaviors and layouts within a single app.

FragmentManager also calls the various lifecycle methods of the fragments it is
responsible for. This is distinct from the Activity lifecycle methods that are called by
Android, yet closely related because FragmentManager calls many of the Fragment
lifecycle methods in response to the Activity lifecycle methods being called. As usual,
we don't need to worry too much about when and how if we respond appropriately in
each situation.

Note
Fragments are going to be a fundamental part of many, if not all our future
apps. As we did with naming conventions, string resources, and encapsulation,
however, we will not use fragments for simple learning purposes or very small
apps when they would be overkill. The exception to this will of course be when
we are learning about fragments.

Our first Fragment app
Let's build Fragment in its simplest possible form so we can understand what is going
on before, in later chapters, we start producing Fragments all over the place that are of
genuine usefulness.

Note
I urge all readers to go through and build this project. There is a lot of jumping
around from file to file and just reading alone can make it seem more complex
than it really is. Certainly, you can copy and paste the code from the download
bundle but please also follow the steps and create your own projects and
classes. Fragments are not too tough but their implementation, as their name
suggests, is a little fragmented.

Create a new project called Simple Fragment using the Empty Activity template and
leaving the rest of the settings at their defaults.

Telegram Channel @IRFaraExam

Our first Fragment app 625

Switch to activity_main.xml and delete the default Hello world! TextView widget.

Now make sure the root ConstraintLayout is selected by left-clicking it in the
Component tree window, then change its id property to fragmentHolder. We will
now be able to get a reference to this layout in our Java code and as the id property
implies, we will be adding a Fragment to it.

Now we will create a layout that will define our fragment's appearance. Right-click
the layout folder and choose New | Layout resource file. In the File name field, type
fragment_layout, in the RootElement field, type LinearLayout, and left-click OK.
We have just created a new layout of type LinearLayout.

Add a single Button widget anywhere on the new layout and make its id
property button.

Now we have a simple layout for our Fragment to use, let's write some Java code to make
the actual fragment.

Note
Note that you can create a Fragment by simply dragging and dropping one
from the palette, but doing things this way is much less flexible and controllable
and flexibility and control are the big benefits to fragments, as we will see
throughout the next chapter. By creating a class that extends Fragment, we
can make as many fragments from it as we like.

In the Project Explorer, right-click the folder that contains the MainActivity file. From
the context menu, choose New | Java class and call it SimpleFragment.

Note
Note that there are options to create Fragment classes in various pre-coded
states to implement a Fragment more quickly, but now they would slightly
cloud the learning objectives of this app.

Telegram Channel @IRFaraExam

626 Design Patterns, Multiple Layouts, and Fragments

In our new SimpleFragment class, change the code to extend Fragment. As you type
the code, you will be asked to choose the specific Fragment class to import, as shown in
the next screenshot:

Figure 24.13 – Choose the specific Fragment class

Choose the top option, which is androidx.fragment.app.

Note
We will need all of the following import statements in this class. The
preceding step has already added the androidx.fragment.app.
Fragment class:

import androidx.fragment.app.Fragment;

import android.os.Bundle;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.Button;

import android.widget.Toast;

Now add a single String variable called myString and a Button variable called
myButton as members.

Telegram Channel @IRFaraExam

Our first Fragment app 627

Now override the onCreate method. Inside the onCreate method, initialize
myString to Hello from SimpleFragment. Our code so far (excluding the
package declaration and import statements) will look exactly like this next code:

public class SimpleFragment extends Fragment {

 // member variables accessible from anywhere in this

 fragment

 String myString;

 Button myButton;

 @Override

 public void onCreate(Bundle savedInstanceState){

 super.onCreate(savedInstanceState);

 myString = "Hello from SimpleFragment";

 }

}

In the previous code, we created a member variable called myString, then in the
onCreate method, we initialized it. This is very much like what we did for our previous
apps when only using Activity.

The difference, however, is that we did not set the view or attempt to get a reference to our
Button member variable, myButton.

When using Fragment, we need to do this in the onCreateView method. Let's
override that now and see how we set the view and get a reference to our Button widget.

Add this code to the SimpleFragment class after the onCreate method:

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup

container, Bundle savedInstanceState) {

 View view = inflater.inflate(R.layout.fragment_layout,

 container, false);

 myButton = view.findViewById(R.id.button);

Telegram Channel @IRFaraExam

628 Design Patterns, Multiple Layouts, and Fragments

 return view;

}

To understand the previous block of code, we must first look at the onCreateView
method signature. First, notice the start of the method states that it must return an object
of type View:

public View onCreateView...

Next, we have three arguments. Let's look at the first two:

(LayoutInflater inflater, ViewGroup container,...

We need a LayoutInflater reference as we cannot call the setContentView
method because the Fragment class provides no such method. In the body of
onCreateView, we use the inflate method of inflater to inflate our layout
contained in fragment_layout.xml and initialize view (an object of type View)
with the result.

We use container, which was passed into onCreateView as an argument, in
the inflate method also. The container variable is a reference to the layout in
activity_main.xml.

It might seem obvious that activity_main.xml is the containing layout, but as we will
see later in the chapter, the ViewGroup container argument allows any Activity
with any layout to be the container for our fragment. This is exceptionally flexible and
makes our Fragment code reusable to a significant extent.

The third argument we pass in to inflate is false, which means that we don't want
our layout immediately added to the containing layout. We will do this ourselves soon
from another part of the code.

The third argument of onCreateView is Bundle savedInstanceState, which is
there to help us maintain the data that our fragments hold.

Now we have an inflated layout contained in view, we can use this to get a reference to
our Button widget like this:

myButton = view.findViewById(R.id.button);

Telegram Channel @IRFaraExam

Our first Fragment app 629

And use the view instance as the return value to the calling code, as required:

return view;

Now we can add an anonymous class to listen for clicks on our button in the usual
manner. In the onClick method, we display a pop-up Toast message to demonstrate
that everything is working as expected.

Add this code just before the return statement in the onCreateView method as
highlighted in this next code:

@Override

public View onCreateView(LayoutInflater inflater,

ViewGroup container,

Bundle savedInstanceState) {

View view = inflater.inflate(R.layout.fragment_layout,

container, false);

myButton = view.findViewById(R.id.button);

myButton.setOnClickListener(

 new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 Toast.makeText(getActivity(),

 myString ,

 Toast.LENGTH_SHORT).

 show();

 }

 });

return view;

}

Telegram Channel @IRFaraExam

630 Design Patterns, Multiple Layouts, and Fragments

Note
As a reminder, the getActivity() method call used as an argument
in makeText gets a reference to the Activity that contains the
Fragment. This is required to display a Toast message. We also used the
getActivity method in our FragmentDialog based classes in the
Note to Self app.

We can't run our app just yet; it will not work because there is one more step required.
We need to create an instance of our SimpleFragment class and initialize it
appropriately. This is where the FragmentManager class will get introduced.

This next code creates a new FragmentManager by calling
getSupportFragmentManager. The code then creates a new Fragment, based
on our SimpleFragment class using the FragmentManager and passing in the
ID of the layout (within the Activity) that will hold it.

Add this code in the onCreate method of MainActivity.java, just after the
call to the setContentView method:

// Get a fragment manager

FragmentManager fManager = getSupportFragmentManager();

// Create a new fragment using the manager

// Passing in the id of the layout to hold it

Fragment frag = fManager.findFragmentById(R.id.fragmentHolder);

// Check the fragment has not already been initialized

if(frag == null){

 // Initialize the fragment based on our SimpleFragment

 frag = new SimpleFragment();

 fManager.beginTransaction()

 .add(R.id.fragmentHolder, frag)

 .commit();

}

Telegram Channel @IRFaraExam

Fragment reality check 631

Note
You will need to add the following import statements to the
MainActivity class:

import androidx.fragment.app.Fragment;

import androidx.fragment.app.FragmentManager;

import android.os.Bundle;

Now run the app and gaze in wonder at our clickable button that displays a message with
the Toast class and took two layouts and two whole classes to create:

Figure 24.14 – Displaying a message with the Toast class

If you remember achieving more than this way back in Chapter 2, First Contact: Java, XML,
and the UI Designer, and with far less code, then it is clear that we need a fragment reality
check to fully understand the answer to the question of why we are doing it like this!

Fragment reality check
So, what does this Fragment stuff really do for us? Our first Fragment mini-app
would have the same appearance and functionality had we not bothered with the
Fragment at all.

In fact, using the Fragment class has made the whole thing more complicated! Why
would we want to do this?

We know that a Fragment instance or fragments can be added to the layout of
an Activity.

Telegram Channel @IRFaraExam

632 Design Patterns, Multiple Layouts, and Fragments

We know that a Fragment not only contains its own layout (view) but also its very own
code (controller), which, although hosted by an Activity, the Fragment instance is
virtually independent.

Our quick app only showed one Fragment instance in action, but we could have an
Activity that hosts two or more fragments. We then effectively have two almost
independent controllers displayed on a single screen.

What is most useful about this, however, is that when the Activity starts, we can
detect attributes of the device our app is running on – perhaps phone or tablet; portrait
or landscape. We can then use this information to decide to display either just one or two
of our fragments simultaneously.

This not only helps us achieve the kind of functionality discussed in the section Real-
world apps at the start of the chapter but it also allows us to do so using the exact same
Fragment code for both possible scenarios!

This really is the essence of fragments. We create a whole app by pairing up both
functionality (controller) and appearance (view) into a bunch of fragments that we can
reuse in different ways, almost without a care.

It is, of course, possible to foresee a few stumbling blocks so take a look at this FAQ.

Frequently asked question
1. The missing link is that if all these fragments are fully functioning independent

controllers, then we need to learn a bit more about how we would implement our
model layer. If we simply have, say, an ArrayList, like with the Note to Self app,
where will the ArrayList instance go? How would we share it between fragments
(assuming both/all fragments need access to the same data)?

There is an entirely more elegant solution we can use to create a model layer (both
the data itself and the code to maintain the data). We will see this when we explore
the NavigationView layout in Chapter 26, Advanced UI with Navigation Drawer
and Fragment, and Android databases in Chapter 27, Android Databases.

Summary
Now we have a broad understanding of what Fragments are for and how we can begin to
use them, we can start to go deeper into how they are used. In the next chapter, we will
complete a couple of apps that use multiple Fragments in different ways.

Telegram Channel @IRFaraExam

25
Building a Simple

Image Gallery App
Paging is the act of moving from page to page, and on Android, we do this by swiping
a finger across the screen. When we do this, the current page transitions in a direction and
speed to match the finger movement. This is a useful and practical way to navigate around
an app but perhaps even more than this, it creates an extremely satisfying visual effect for
the user. Also, as with the RecyclerView widget, we can selectively load just the data
required for the current page and perhaps the data for the previous and next pages.

The Android API, as you will have come to expect, has some solutions for achieving
paging in quite a simple manner.

In this chapter, we will learn how to do the following:

• Achieve paging and swiping with images as you might find in a photo gallery app.

First, let's look at a swiping example.

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2025.

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2025
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2025
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2025

634 Building a Simple Image Gallery App

Angry Birds classic swipe menu
Here we can see the famous Angry Birds level selection menu showing swiping/paging
in action:

Figure 25.1 – Angry Birds level selection menu

Let's build a paging app.

Building an image gallery/slider app
Create a new project in Android Studio called Image Pager. Use the Empty Activity
template and leave all the rest of the settings at their defaults.

The images are in the download bundle in the Chapter 25/Image Pager/
drawable folder. This next screenshot shows them in Windows File Explorer:

Telegram Channel @IRFaraExam

Building an image gallery/slider app 635

Figure 25.2 – Add images

Add the images to the drawable folder in the Project Explorer in Android Studio
or you could add more interesting images, perhaps some photos you have taken.

Implementing the layout
For a simple image paging app, we use the PagerAdapter class. We can think of this as
being like RecyclerAdapter but for images as it will handle the display of an array of
images in a ViewPager widget. This is much like how RecyclerAdapter handles the
display of the contents of an ArrayList in a ListView. All we need to do is override
the appropriate methods.

To implement an image gallery with PagerAdapter, we first need a ViewPager widget
in our main layout. So you can see precisely what is required, here is the actual XML code
for activity_main.xml. Edit activity_main.xml to look exactly like this:

<RelativeLayout xmlns:android=

 "http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

 <androidx.viewpager.widget.ViewPager

 android:id="@+id/pager"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" />

</RelativeLayout>

Telegram Channel @IRFaraExam

636 Building a Simple Image Gallery App

The class named androidx.ViewPager.widget.ViewPager is the class that makes
this functionality available in Android versions that were released before ViewPager.

Next, a bit like how we needed a layout to represent a list item, we need a layout to
represent an item, in this case, an image, in ViewPager. Create a new layout file in
the usual way and call it pager_item.xml. Add a single ImageView with an ID of
imageView.

Use the visual designer to achieve this or copy the following XML into pager_item.
xml:

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

 <ImageView

 android:id="@+id/imageView"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

</RelativeLayout>

Now we can make a start on our PagerAdapter class.

Coding the PagerAdapter class
Next, we need to extend PagerAdapter to handle images. Create a new class called
ImagePagerAdapter and make it extend PagerAdapter.

Add the following imports to the top of the ImagePagerAdapter class. We often rely
on using the Alt + Enter shortcut to add imports. We are doing things slightly differently
this time because there are some very similarly named classes that will not suit our
objectives.

Add the following imports to the ImagePagerAdapter class:

import android.content.Context;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

Telegram Channel @IRFaraExam

Building an image gallery/slider app 637

import android.widget.ImageView;

import android.widget.RelativeLayout;

import androidx.viewpager.widget.PagerAdapter;

import androidx.viewpager.widget.ViewPager;

Here is the class declaration with the extends... code added as well as a couple of
member variables. These variables are a Context object that we will use shortly and an
int array called images. The reason for having an int array for images is that we will
store int identifiers for each of the images. We'll see how this works in a few code blocks
time. The last member variable is a LayoutInflater instance, which you can probably
guess will be used to inflate each of the instances of pager_item.xml.

Extend the PagerAdapter class and add the member variables we have just discussed:

public class ImagePagerAdapter extends PagerAdapter {

 Context context;

 int[] images;

 LayoutInflater inflater;

}

Now we need a constructor that sets up ImagerPagerAdapter by receiving the
Context from the MainActivity class as well as the int array for the images and
initializing the member variables with them.

Add the constructor method to the ImagePagerAdapter class:

public ImagePagerAdapter(

 Context context, int[] images) {

 this.context = context;

 this.images = images;

}

Telegram Channel @IRFaraExam

638 Building a Simple Image Gallery App

Now we must override the required methods of PagerAdapter. Immediately after the
previous code, add the overridden getCount method, which simply returns the number
of image IDs in the array. This method is used internally by the class:

@Override

public int getCount() {

 return images.length;

}

Now we must override the isViewFromObject method, which returns a Boolean
depending upon whether the current View instance is the same or associated with the
current Object as passed in as a parameter. Again, this is a method that is used internally
by the class. Immediately after the previous code, add this Override method:

@Override

public boolean isViewFromObject(View view, Object object) {

 return view == object;

}

Now we must override the instantiateItem method; this is where we get most of
the work that concerns us done. First, we declare a new ImageView object, and then we
initialize our LayoutInflater member. Next, we use the LayoutInflater instance
to declare and initialize a new View instance from our pager_item.xml layout file.

After this, we get a reference to the ImageView widget inside the pager_item.
xml layout. We can now add the appropriate image as the content of the ImageView
widget based on the position parameter of the instantiateItem method and the
appropriate ID integer from the images array.

Finally, we add the layout to the PagerAdapter instance with the addView method
and return from the method.

Add the method we have just discussed:

@Override

public Object instantiateItem(

 ViewGroup container, int position) {

 ImageView image;

 inflater = (LayoutInflater)

Telegram Channel @IRFaraExam

Building an image gallery/slider app 639

 context.getSystemService(

 Context.LAYOUT_INFLATER_SERVICE);

 View itemView = inflater.inflate(

 R.layout.pager_item, container, false);

 // get reference to imageView in pager_item layout

 image =

 itemView.findViewById(R.id.imageView);

 // Set an image to the ImageView

 image.setImageResource(images[position]);

 // Add pager_item layout as the current page to the

 ViewPager

 ((ViewPager) container).addView(itemView);

 return itemView;

}

The last method we must override is the destroyItem method, which the class can
call when it needs to remove an appropriate item based on the value of the position
parameter.

Add the destroyItem method after the previous code and before the closing curly
brace of the ImagePagerAdapter class:

@Override

public void destroyItem(ViewGroup container,

 int position,

 Object object) {

 // Remove pager_item layout from ViewPager

 container.removeView((RelativeLayout) object);

}

Telegram Channel @IRFaraExam

640 Building a Simple Image Gallery App

As we saw when coding the ImagePagerAdapter class, there is very little to it. It is just
a case of properly implementing the overridden methods that the ImagePagerAdapter
class uses to help make things work smoothly behind the scenes.

Now we can code the MainActivity class, which will use our ImagePagerAdapter
implementation.

Coding the MainActivity class
Finally, we can code our MainActivity class. As with the ImagePagerAdapter
class, for clarity, add the following import statements manually to the MainActivity.
java class before the class declaration as shown next:

import androidx.appcompat.app.AppCompatActivity;

import androidx.viewpager.widget.PagerAdapter;

import androidx.viewpager.widget.ViewPager;

We need a few member variables. Unsurprisingly, we need a ViewPager instance,
which will be used to hold a reference to the ViewPager in our layout. Also, we need an
ImagePagerAdapter reference for the class we have just coded. We also need an int
array to hold an array of image IDs.

Adapt the MainActivity class to be as follows:

public class MainActivity extends AppCompatActivity {

 ViewPager viewPager;

 PagerAdapter adapter;

 int[] images;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 ...

All the rest of the code goes in the onCreate method. We initialize our int array with
each of the images that we added to the drawable-xhdpi folder.

Telegram Channel @IRFaraExam

Building an image gallery/slider app 641

We initialize the ViewPager in the usual way with the findViewById method.
We also initialize our ImagePagerAdapter instance by passing in a reference of
the MainActivity class and the images array, as required by the constructor that
we coded previously. Finally, we bind the adapter to the pager with the setAdapter
method.

Code the onCreate method to look just like this next code:

@Override

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 // Grab all the images and stuff them in our array

 images = new int[] { R.drawable.image1,

 R.drawable.image2,

 R.drawable.image3,

 R.drawable.image4,

 R.drawable.image5,

 R.drawable.image6 };

 // get a reference to the ViewPager in the layout

 viewPager = findViewById(R.id.pager);

 // Initialize our adapter

 adapter = new

 ImagePagerAdapter(MainActivity.this, images);

 // Binds the Adapter to the ViewPager

 viewPager.setAdapter(adapter);

}

Now we are ready to run the app.

Telegram Channel @IRFaraExam

642 Building a Simple Image Gallery App

Running the gallery app
Here we can see the first image from our int array:

Figure 25.3 – First image

Swipe a little right and left to see the smooth, pleasing way the images transition:

Telegram Channel @IRFaraExam

Summary 643

Figure 25.4 – Swipe to view images

That's it for this chapter. Let's review what we have done.

Summary
In this chapter, we saw how we can use pagers for simple image galleries with just a few
lines of code and some very simple layouts. We achieved this so easily because of the
ImagePagerAdapter class.

In the next chapter, we will look at another really cool UI element that is used in many of
the latest Android apps, probably because it looks great and is a real pleasure, as well as
extremely practical, to use. The NavigationView layout will enable us to design and
implement different layouts with entirely different behavior (code). Let's take a look at the
NavigationView layout.

Telegram Channel @IRFaraExam

Telegram Channel @IRFaraExam

26
Advanced UI with

Navigation Drawer
and Fragment

In this chapter, we will see what is (arguably) the most advanced UI. The
NavigationView widget or navigation drawer, because of the way it slides out its
contents, can be created simply by choosing it as a template when you create a new
project. We will do just that and then we will examine the autogenerated code and learn
how to interact with it. Then we will use all we know about Fragment to populate each
of the "drawers" with different behavior and views. Then in the next chapter, we will learn
about databases to add some new functionality to each Fragment.

And here is what we will be doing in this chapter:

• Introducing NavigationView

• Getting started with the simple database app

• Implementing a NavigationView project based on the autogenerated Android
Studio template

• Adding multiple Fragments and layouts to NavigationView

Let's take a look at this extremely cool UI pattern.

Telegram Channel @IRFaraExam

646 Advanced UI with Navigation Drawer and Fragment

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2026.

Introducing NavigationView
What's so great about NavigationView? Well, the first thing that might catch your eye
is that it can be made to look extremely stylish. Take a look at this next screenshot, which
shows off a NavigationView in action in the Google Play app:

Figure 26.1 – NavigationView in action

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2026
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2026
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2026

Examining the Simple Database app 647

To be honest, right from the start, ours is not going to be as fancy as the one in the Google
Play app. But the same functionality will be present in our app.

What else is neat about this UI is the way that it slides to hide/reveal itself when required.
It is because of this behavior that it can be a significant size, making it extremely flexible
with regard to the options that can be put on it, and when the user is finished with it, it
completely disappears, like a drawer.

I suggest trying the Google Play app now and seeing how it works if you haven't already.

You can slide your thumb/finger from the left-hand edge of the screen and the drawer will
slowly slide out. You can of course slide it away again in the opposite direction.

While the navigation drawer is open, the rest of the screen is slightly dimmed (as seen in
the previous screenshot), helping the user to focus on the navigation options offered.

You can also tap anywhere off the Navigation Drawer while it is open, and it will slide
itself away, leaving the entire screen clear for the rest of the app.

The drawer is also opened by tapping on the menu icon in the top-left corner.

We can also tweak and refine the behavior of the navigation drawer, as we will see towards
the end of the chapter.

Examining the Simple Database app
In this chapter, we will focus on creating the NavigationView and populating it with
four Fragment class instances and their respective layouts. In the next chapter, we will
learn about and implement the database functionality.

Telegram Channel @IRFaraExam

648 Advanced UI with Navigation Drawer and Fragment

The screens of the database app are as follows. Here is what our NavigationView layout
looks like in all its glory. Note that many of the options and most of the appearance and
decoration are provided by default when using the NavigationView Activity template.

Figure 26.2 – NavigationView layout

The four main options are what we will add to the UI. They are Insert, Delete, Search,
and Results. The layouts are shown, and their purposes are described as follows.

Telegram Channel @IRFaraExam

Examining the Simple Database app 649

Insert
The first screen allows the user to insert a person's name and their associated age into
the database:

Figure 26.3 – Insert

This simple layout has two EditText widgets and a button. The user will enter a name
and an age and then click the INSERT button to add them to the database.

Delete
This screen is even simpler. The user will enter a name in the EditText widget and click
the button:

Figure 26.4 – Delete

Telegram Channel @IRFaraExam

650 Advanced UI with Navigation Drawer and Fragment

If the name entered is present in the database, then the entry (name and age) will be
deleted.

Search
This layout is much the same as the previous layout but has a different purpose:

Figure 26.5 – Search

The user will enter a name into the EditText widget and then click the SEARCH
button. If the name is present in the database, then it will be displayed along with the
matching age.

Results
This screen shows all the entries in the entire database:

Figure 26.6 – Results

Let's get started with the Navigation Drawer.

Telegram Channel @IRFaraExam

Starting the Simple Database project 651

Starting the Simple Database project
Create a new project in Android Studio. Call it Age Database, use the Navigation
Drawer Activity template. Before we do anything else, it is well worth running the app on
an emulator to see how much has been autogenerated as part of this template:

Figure 26.7 – Home page

Telegram Channel @IRFaraExam

652 Advanced UI with Navigation Drawer and Fragment

At first glance, it is just a plain old layout with a TextView widget. But swipe from the
left edge of the screen or press the menu button and the Navigation Drawer layout reveals
itself:

Figure 26.8 – Navigation page

Now we can modify the options and insert a Fragment (with a layout) for each option.
To understand how it works, let's examine some of the autogenerated code.

Exploring the autogenerated code and assets
Open the res/menu folder. Notice there is an extra file titled activity_main_
drawer.xml. This next code is an excerpt from this file, so we can discuss its contents:

<group android:checkableBehavior="single">

 <item

Telegram Channel @IRFaraExam

Coding the Fragment classes and their layouts 653

 android:id="@+id/nav_home"

 android:icon="@drawable/ic_menu_camera"

 android:title="@string/menu_home" />

 <item

 android:id="@+id/nav_gallery"

 android:icon="@drawable/ic_menu_gallery"

 android:title="@string/menu_gallery" />

 <item

 android:id="@+id/nav_slideshow"

 android:icon="@drawable/ic_menu_slideshow"

 android:title="@string/menu_slideshow" />

</group>

Notice there are four item tags within a group tag. Now notice the title tags from top
to bottom exactly correspond to the three text options in the menu of the autogenerated
navigation drawer. Also notice that within each item tag, there is an id tag, so we
can refer to them in our Java code as well as an icon tag, which corresponds to one of
the icons in the drawable folder and is the icon displayed next to the option in the
navigation drawer.

There are also some files that we will not be using that have been autogenerated.

Let's code the Fragment based classes and their layouts.

Coding the Fragment classes and their layouts
We will create the four classes including the code that loads the layout as well as the actual
layouts as well, but we won't put any of the database functionality into Java until we have
learned about Android databases in the next chapter.

After we have our four classes and their layouts, we will see how to load them from
the Navigation Drawer menu. By the end of the chapter, we will have a fully working
Navigation Drawer that lets the user swap between fragments but the fragments won't
actually have any functionality until the next chapter.

Telegram Channel @IRFaraExam

654 Advanced UI with Navigation Drawer and Fragment

Creating the empty files for the classes and layouts
Create four layout files with vertical LinearLayout as their parent view by right-
clicking on the layout folder and selecting New | Layout resource file. Name the first
file content_insert, the second content_delete, the third content_search,
and the fourth content_results. All the options apart from the LinearLayout
option and the filename can be left as their defaults.

You should now have four new layout files containing LinearLayout parents.

Let's code the related Java classes.

Coding the classes
Create four new classes by right-clicking the folder that contains the MainActivity.
java file and selecting New | Java class. Name them InsertFragment,
DeleteFragment, SearchFragment, and ResultsFragment. It should be plain
from the names which fragments will show which layouts.

Just to make it clear, let's add some code to each class to make the classes extend
Fragment and load their associated layout.

Open InsertFragment.java and edit it to contain the following code:

import android.os.Bundle;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import androidx.fragment.app.Fragment;

public class InsertFragment extends Fragment {

 @Override

 public View onCreateView(

 LayoutInflater inflater,

 ViewGroup container,

 Bundle savedInstanceState) {

 View v = inflater.inflate(

 R.layout.content_insert,

Telegram Channel @IRFaraExam

Coding the Fragment classes and their layouts 655

 container, false);

 // Database and UI code goes here in next chapter

 return v;

 }

}

Open DeleteFragment.java and edit it to contain the following code:

import android.os.Bundle;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import androidx.fragment.app.Fragment;

public class DeleteFragment extends Fragment {

 @Override

 public View onCreateView(

 LayoutInflater inflater,

 ViewGroup container,

 Bundle savedInstanceState) {

 View v = inflater.inflate(

 R.layout.content_delete,

 container, false);

 // Database and UI code goes here in next chapter

 return v;

 }

}

Telegram Channel @IRFaraExam

656 Advanced UI with Navigation Drawer and Fragment

Open SearchFragment.java and edit it to contain the following code:

import android.os.Bundle;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import androidx.fragment.app.Fragment;

public class SearchFragment extends Fragment{

 @Override

 public View onCreateView(

 LayoutInflater inflater,

 ViewGroup container,

 Bundle savedInstanceState) {

 View v = inflater.inflate(

 R.layout.content_search,

 container, false);

 // Database and UI code goes here in next

 chapter

 return v;

 }

}

Open ResultsFragment.java and edit it to contain the following code:

import android.os.Bundle;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import androidx.fragment.app.Fragment;

Telegram Channel @IRFaraExam

Coding the Fragment classes and their layouts 657

public class ResultsFragment extends Fragment {

 @Override

 public View onCreateView(

 LayoutInflater inflater,

 ViewGroup container,

 Bundle savedInstanceState) {

 View v = inflater.inflate(

 R.layout.content_results,

 container, false);

 // Database and UI code goes here in next chapter

 return v;

 }

}

Each class is completely empty of functionality except that in the onCreateView
method, the appropriate layout is loaded from the associated layout file.

Let's add the UI to the layout files we created earlier.

Designing the layouts
As we saw at the start of the chapter, all the layouts are simple. Getting your layouts
identical to mine is not essential but as always, the ID values must be the same or the Java
code we write in the next chapter won't work.

Designing content_insert.xml
Drag two Plain Text widgets from the Text category of the palette onto the layout.
Remember that Plain Text widgets are EditText instances. Now drag a Button
widget onto the layout after the two Plain Text widgets.

Telegram Channel @IRFaraExam

658 Advanced UI with Navigation Drawer and Fragment

Configure the widgets according to this table:

This is what your layout should look like in the design view in Android Studio:

Figure 26.9 – Insert layout

Designing content_delete.xml
Drag a Plain Text onto the layout with a Button widget below it. Configure the
widgets according to this table:

Telegram Channel @IRFaraExam

Coding the Fragment classes and their layouts 659

This is what your layout should look like in the design view in Android Studio:

Figure 26.10 – Delete layout

Designing content_search.xml
Drag a Plain Text followed by a button and then a regular TextView onto the layout
and then configure the widgets according to this table:

This is what your layout should look like in the design view in Android Studio:

Figure 26.11 – Search layout

Telegram Channel @IRFaraExam

660 Advanced UI with Navigation Drawer and Fragment

Designing content_results.xml
Drag a single TextView widget (not Plain Text/EditText this time) onto the
layout. We will see in the next chapter how to add an entire list into this single TextView
widget.

Configure the widget according to this table:

This is what your layout should look like in the design view in Android Studio:

Figure 26.12 – Results layout

Now we can use the Fragment based classes and their layouts.

Using the Fragment classes and their layouts
This stage has three steps. First, we need to edit the menu of the Navigation Drawer
layout to reflect the options the user has. Next, we need a View instance in the layout
to hold whatever the active Fragment instance is, and finally, we need to add code to
MainActivity.java to switch between the different Fragment instances when the
user taps on the menu.

Editing the Navigation Drawer menu
Open the activity_main_drawer.xml file in the res/menu folder of the project
explorer. Edit the code within the group tags that we saw earlier to reflect our menu
options of Insert, Delete, Search, and Results:

<group android:checkableBehavior="single">

 <item

 android:id="@+id/nav_insert"

 android:icon="@drawable/ic_menu_camera"

Telegram Channel @IRFaraExam

Using the Fragment classes and their layouts 661

 android:title="Insert" />

 <item

 android:id="@+id/nav_delete"

 android:icon="@drawable/ic_menu_gallery"

 android:title="Delete" />

 <item

 android:id="@+id/nav_search"

 android:icon="@drawable/ic_menu_slideshow"

 android:title="Search" />

 <item

 android:id="@+id/nav_results"

 android:icon="@drawable/ic_menu_camera"

 android:title="Results" />

</group>

Note that the results item reuses the camera icon. It is left as a challenge for you if you
wish to add a unique icon of your own.

Now we can add a layout within the main layout to hold whatever the current active
fragment is.

Adding a holder to the main layout
Open the content_main.xml file in the layout folder. Locate the following existing
code, which is the current fragment holder that is not right for our uses:

<fragment

 android:id="@+id/nav_host_fragment"

 android:name="androidx.navigation

 .fragment.NavHostFragment"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:defaultNavHost="true"

 app:layout_constraintLeft_toLeftOf="parent"

 app:layout_constraintRight_toRightOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 app:navGraph="@navigation/mobile_navigation" />

Telegram Channel @IRFaraExam

662 Advanced UI with Navigation Drawer and Fragment

Delete the preceding code and replace it with this XML code just before the closing tag of
ConstraintLayout:

 <FrameLayout

 android:id="@+id/fragmentHolder"

 android:layout_width="368dp"

 android:layout_height="495dp"

 tools:layout_editor_absoluteX="8dp"

 tools:layout_editor_absoluteY="8dp">

 </FrameLayout>

Switch to design view and click the Infer constraints button to fix the new layout in place.

Now we have a FrameLayout widget with an id attribute of fragmentHolder, which
we can get a reference to and load all our Fragment instance layouts into.

Coding the MainActivity.java class
Replace all the existing import directives with the following:

import android.os.Bundle;

import com.google.android.material.

 floatingactionbutton.FloatingActionButton;

import com.google.android.material.snackbar.Snackbar;

import android.view.View;

import com.google.android.material.navigation.

 NavigationView;

import androidx.core.view.GravityCompat;

import androidx.drawerlayout.widget.DrawerLayout;

import androidx.appcompat.app.ActionBarDrawerToggle;

import androidx.appcompat.app.AppCompatActivity;

import androidx.appcompat.widget.Toolbar;

import androidx.fragment.app.FragmentTransaction;

import android.view.MenuItem;

Telegram Channel @IRFaraExam

Using the Fragment classes and their layouts 663

Open the MainActivity.java file and edit the entire code to match the following.

Note
It might be quickest to delete everything except the import directives we
have just added.

We will discuss the code next, so study the variable names and the various classes and
their related methods:

public class MainActivity extends AppCompatActivity

 implements NavigationView.

OnNavigationItemSelectedListener {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Toolbar toolbar = findViewById(R.id.toolbar);

 setSupportActionBar(toolbar);

 FloatingActionButton fab = findViewById(R.id.fab);

 fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Snackbar.make(view, "

 Replace with your own action",

 Snackbar.LENGTH_LONG)

 .setAction("Action", null).show();

 }

 });

 DrawerLayout drawer =

 findViewById(R.id.drawer_layout);

 ActionBarDrawerToggle toggle = new

 ActionBarDrawerToggle(

 this, drawer, toolbar,

 R.string.navigation_drawer_open,

Telegram Channel @IRFaraExam

664 Advanced UI with Navigation Drawer and Fragment

 R.string.navigation_drawer_close);

 drawer.addDrawerListener(toggle);

 toggle.syncState();

 NavigationView navigationView

 = findViewById(R.id.nav_view);

 navigationView

 .setNavigationItemSelectedListener(this);

 }

}

In the preceding code, the onCreate method handles aspects of our UI. The code gets a
reference to a DrawerLayout widget that corresponds to the layout we have just seen.
The code also creates a new instance of ActionBarDrawerToggle, which allows
the controlling/toggling of the drawers. Next, a reference is captured to the layout file
of the navigation drawer itself (nav_view) and the final line of code sets a listener on
NavigationView.

Now add the onBackPressed method as follows:

@Override

public void onBackPressed() {

 DrawerLayout drawer =

 findViewById(R.id.drawer_layout);

 if (drawer.isDrawerOpen(GravityCompat.START)) {

 drawer.closeDrawer(GravityCompat.START);

 } else {

 super.onBackPressed();

 }

}

The onBackPressed method is an overridden method of Activity and it handles what
happens when the user presses the back button on their device. The code closes the drawer
if it is open and if it is not, simply calls super.onBackPressed. This means that the
back button will close the drawer if it is open or have the default behavior if it was already
closed.

Telegram Channel @IRFaraExam

Using the Fragment classes and their layouts 665

Add the onCreateOptionsMenu and onOptionsItemSelected methods, which
aren't really used in this app but will add the default functionality to the options button:

@Override

public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

}

@Override

public boolean onOptionsItemSelected(MenuItem item) {

 // Handle action bar item clicks here. The action bar

 will

 // automatically handle clicks on the Home/Up button,

 so long

 // as you specify a parent activity in

 AndroidManifest.xml.

 int id = item.getItemId();

 //noinspection SimplifiableIfStatement

 if (id == R.id.action_settings) {

 return true;

 }

 return super.onOptionsItemSelected(item);

}

Now add the onNavigatioItemSelected method shown next:

@Override

public boolean onNavigationItemSelected(MenuItem item) {

 // Handle navigation view item clicks here.

 // Create a transaction

 FragmentTransaction transaction =

Telegram Channel @IRFaraExam

666 Advanced UI with Navigation Drawer and Fragment

 getSupportFragmentManager().beginTransaction();

 int id = item.getItemId();

 if (id == R.id.nav_insert) {

 // Create a new fragment of the appropriate type

 InsertFragment fragment = new InsertFragment();

 // What to do and where to do it

 transaction.replace(R.id.fragmentHolder,

 fragment);

 } else if (id == R.id.nav_search) {

 SearchFragment fragment = new SearchFragment();

 transaction.replace(R.id.fragmentHolder,

 fragment);

 } else if (id == R.id.nav_delete) {

 DeleteFragment fragment = new DeleteFragment();

 transaction.replace(R.id.fragmentHolder,

 fragment);

 } else if (id == R.id.nav_results) {

 ResultsFragment fragment = new ResultsFragment();

 transaction.replace(R.id.fragmentHolder,

 fragment);

 }

 // Ask Android to remember which

 // menu options the user has chosen

 transaction.addToBackStack(null);

 // Implement the change

 transaction.commit();

 DrawerLayout drawer =

Telegram Channel @IRFaraExam

Summary 667

 findViewById(R.id.drawer_layout);

 drawer.closeDrawer(GravityCompat.START);

 return true;

}

Let's go through the code in the onNavigationItemSelected method. Most of the
code should look familiar. For each of our menu options, we create a new Fragment of
the appropriate type and insert it into our RelativeLayout with an id property value
of fragmentHolder.

Finally, for the MainActivity.java file, the transaction.addToBackStack
method means that the chosen Fragment instance will be remembered in order with
any others. The result of this is that if the user chooses the insert fragment, then the
results fragment then taps the back button, then the app will return the user to the
insert fragment.

You can now run the app and use the Navigation Drawer menu to flip between all our
different Fragment instances. They will look just as they did in the screenshots at the
start of this chapter, but they don't have any functionality yet.

Summary
In this chapter, we saw how straightforward it is to have an attractive and pleasing UI and
although our Fragment instances don't have any functionality yet, they are set up ready
to go once we have learned about databases.

In the next chapter, we will learn about databases in general, the specific database that
Android apps can use, and we will then add the functionality to our Fragment classes.

Telegram Channel @IRFaraExam

Telegram Channel @IRFaraExam

27
Android Databases

If we are going to make apps that offer our users significant features, then we are almost
certainly going to need a way to manage, store, and filter significant amounts of data.

It is possible to store very large amounts of data efficiently with JSON, but when we
need to use that data selectively rather than simply restricting ourselves to the options of
"save everything" and "load everything," we need to think about what other options are
available.

A good computer science course would probably teach you about the algorithms
necessary to handle sorting and filtering our data, but the effort involved would be quite
extensive, and what are the chances of us coming up with a solution that is as good as
something made by the people who gave us the Android API?

As is so often the case, it makes the most sense to use the solutions provided in the
Android API. As we have seen, the JSON and SharedPreferences classes have
their place, but at some point, we need to move on to using real databases for real-world
solutions. Android uses the SQLite database management system, and as you would
expect, there is an API to make it as easy as possible.

Telegram Channel @IRFaraExam

670 Android Databases

In this chapter, we will do the following:

• Find out exactly what a database is

• Learn what SQL and SQLite are

• Learn the basics of the SQL language

• Take a look at the Android SQLite API

• Code the Age Database app that we started in the previous chapter

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/Android-Programming-for-Beginners-Third-
Edition/tree/main/chapter%2027.

Databases 101
Let's answer a whole bunch of database-related questions and then we can get started
making apps that use SQLite.

What is a database?
A database is both a place of storage and a means to retrieve, store, and manipulate data.
It helps to be able to visualize a database before learning how to use it. The actual structure
of the internals of a database varies greatly depending upon the database in question.
SQLite actually stores all its data in a single file.

It aids our comprehension greatly, however, if we visualize our data as if it were in a
spreadsheet, or sometimes multiple spreadsheets. Our database, like a spreadsheet, will be
divided into multiple columns, which represent different types of data, and rows, which
represent entries of the database.

Think about a database with names and exam scores. Take a look at this visual
representation of such data and imagine what it would look like in a database:

Figure 27.1 – Database example

Telegram Channel @IRFaraExam

https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2027
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2027
https://github.com/PacktPublishing/Android-Programming-for-Beginners-Third-Edition/tree/main/chapter%2027

SQL syntax primer 671

Notice, however, that there is an extra column of data: an _ID column. We will talk
more about this as we proceed. This single spreadsheet-like structure is called a table.
As mentioned before, there might be, and often are, multiple tables in a database. Each
column of the table will have a name that can be referred to when speaking to the
database.

What is SQL?
SQL stands for Structured Query Language. It is the syntax that is used to get things
done with a database.

What is SQLite?
SQLite is the name of the database system that is favored by Android, and it has its own
version of SQL. The reason the SQLite version of SQL needs to be slightly different to
some other versions is that the database has different features.

The SQL syntax primer that follows will be focused on SQLite.

SQL syntax primer
Before we can learn how to use SQLite with Android, we need to first learn the basics of
how to use SQLite in general, in a platform-neutral context.

Let's look at some example SQL code that could be used on a SQLite database directly,
without any Java or Android classes; then we can more easily understand what our Java
code is doing later on.

SQLite example code
SQL has keywords, much like Java, that cause things to happen. Here is a flavor of some of
the SQL keywords we will soon be using:

• INSERT: Allows us to add data to the database

• DELETE: Allows us to remove data from the database

• SELECT: Allows us to read data from the database

• WHERE: Allows us to specify parts of the database, matching specific criteria, that we
want to use INSERT, DELETE, or SELECT on

• FROM: Used to specify a table or column name in a database

Telegram Channel @IRFaraExam

672 Android Databases

Note
There are many more SQLite keywords than this; for a full list of types, take a
look at this link: https://sqlite.org/lang_keywords.html.

In addition to keywords, SQL has types. Some examples of SQL types are as follows:

• integer: Just what we need for storing whole numbers

• text: Perfect for storing a simple name or address

• real: For large floating-point numbers

Note
There are many more SQLite types than this; for a full list of types, take a look
at this link: https://www.sqlite.org/datatype3.html.

Let's look at how we can combine those types with keywords to create tables and add,
remove, modify, and read data using full SQLite statements.

Creating a table
It would be a perfectly decent question to ask why we don't first create a new database. The
reason for this is that every Android app has access to a SQLite database by default. The
database is private to that app. Here is the statement we would use to create a table within
that database. I have highlighted a few parts to make the statement clearer:

create table StudentsAndGrades

 _ID integer primary key autoincrement not null,

 name text not null,

 score int;

The previous code creates a table called StudentsAndGrades with an integer row ID
that will be automatically increased (incremented) each time a row of data is added.

The table will also have a name column that will be of type text and cannot be blank
(not null).

It will also have a score column that will be of type int. Also, notice that the statement
is completed by a semicolon.

Telegram Channel @IRFaraExam

https://sqlite.org/lang_keywords.html
https://www.sqlite.org/datatype3.html

SQL syntax primer 673

Inserting data into the database
Here is how we might insert a new row of data into that database:

INSERT INTO StudentsAndGrades

 (name, score)

 VALUES

 ("Bart", 23);

The previous code added a row to the database. After the preceding statement,
the database will have one entry with the values (1, Bart, 23) for the columns
(_ID, name, score).

Here is how we might insert another new row of data into that database:

INSERT INTO StudentsAndGrades

 (name, score)

 VALUES

 ("Lisa", 100);

The previous code added a new row of data with the values (2, Lisa, 100) for the
columns (_ID, name, score).

Our spreadsheet-like structure would now look as follows:

Figure 27.2 – Updated spreadsheet

Retrieving data from the database
Here is how we would access all the rows and columns from our database:

SELECT * FROM StudentsAndGrades;

The previous code asks for every row and column. The * symbol can be read as "all."

We can also be a little more selective, as this code demonstrates:

SELECT score FROM StudentsAndGrades

 where name = "Lisa";

The previous code would only return 100, which of course is the score associated with the
name Lisa.

Telegram Channel @IRFaraExam

674 Android Databases

Updating the database structure
We can even add new columns after the table has been created and the data added. This is
simple, as far as the SQL is concerned, but can cause some issues with regard to users' data
on already-published apps. The next statement adds a new column called age that is of
type int:

ALTER TABLE StudentsAndGrades

 ADD

 age int;

There are many more data types, keywords, and ways to use them than we have seen so
far. Next, let's look at the Android SQLite API; we will begin to see how we can use our
new SQLite skills.

Android SQLite API
There are a number of different ways that the Android API makes it fairly easy to use our
app's database. The first class we need to get familiar with is SQLiteOpenHelper.

SQLiteOpenHelper and SQLiteDatabase
The SQLiteDatabase class is the class that represents the actual database. The
SQLiteOpenHelper class, however, is where most of the action takes place. This class
will enable us to get access to a database and initialize an instance of SQLiteDatabase.

In addition, SQLiteOpenHelper, which we will extend in our Age Database app, has
two methods to override. First, it has an onCreate method, which is called the first time
a database is used; therefore, it makes sense that we would put our SQL to create our table
structure in.

The other method we must override is onUpgrade, which, as you can probably guess, is
called when we upgrade our database (use ALTER to change its structure).

Building and executing queries
As our database structures get more complex and as our SQL knowledge grows, our SQL
statements will get quite long and awkward. The potential for errors is high.

The way we will help overcome the problem of complexity is to build our queries from
parts into a string. We can then pass that string to the method that will execute the query
for us.

Telegram Channel @IRFaraExam

Android SQLite API 675

Furthermore, we will use final strings to represent things such as table and column
names so we don't get in a muddle with them.

For example, we could declare the following members, which would represent the table
name and column names from the fictitious example from earlier. Note that we will also
give the database itself a name and have a string for that too:

private static final String DB_NAME = "MyCollegeDB";

private static final String TABLE_S_AND_G = "
StudentsAndGrades";

public static final String TABLE_ROW_ID = "_id";

public static final String TABLE_ROW_NAME = "name";

public static final String TABLE_ROW_SCORE = "score";

Notice in the preceding code how we will benefit from accessing the strings outside
the class, as we declare them public. You might be thinking that this breaks the rules
of encapsulation. It does, but when the intention of the class is to be used as widely as
possible, that is OK. And remember, all the variables are final. An external class using
these string variables cannot change them or mess things up. They can only refer to and
use the values that they hold.

We could then build a query like in this next example. The example adds a new entry to
our hypothetical database and incorporates Java variables into the SQL statement:

String name = "Onkar";

int score = 95;

// Add all the details to the table

String query = "INSERT INTO " + TABLE_S_AND_G + " (" +

 TABLE_ROW_NAME + ", " +

 TABLE_ROW_SCORE +

 ") " +

 "VALUES (" +

 "'" + name + "'" + ", " +

 score +

 ");";

Telegram Channel @IRFaraExam

676 Android Databases

Notice in the previous code that the regular name and score Java variables are
highlighted. The previous string called query is now the SQL statement, exactly
equivalent to this:

INSERT INTO StudentsAndGrades (

 name, score)

 VALUES ('Onkar',95);

Note
It is not essential to completely grasp the previous two blocks of code in order
to proceed with learning Android programming. But if you want to build
your own apps and construct SQL statements that do exactly what you need, it
will help to do so. Why not study the previous two blocks of code in order to
discern the difference between the pairs of double-quote marks, ", which are
the parts of the string joined together with +; the pairs of single quote marks,
', which are part of the SQL syntax; the regular Java variables; and the distinct
semicolons in the SQL statement in the string and Java.

Throughout the typing of the query, Android Studio prompts us as to the names of our
variables, making the chances of an error much lower, even though it is more verbose than
simply typing the query.

Now we can use the classes we introduced previously to execute the query:

// This is the actual database

private SQLiteDatabase db;

// Create an instance of our internal CustomSQLiteOpenHelper
class

CustomSQLiteOpenHelper helper = new

 CustomSQLiteOpenHelper(context);

// Get a writable database

db = helper.getWritableDatabase();

// Run the query

db.execSQL(query);

Telegram Channel @IRFaraExam

Android SQLite API 677

When adding data to the database, we will use execSQL as in the previous code; when
getting data from the database, we will use the rawQuery method as shown next:

Cursor c = db.rawQuery(query, null);

Notice that the rawQuery method returns an object of type Cursor.

Note
There are several different ways we can interact with SQLite, and they each
have their advantages and disadvantages. We have chosen to use raw SQL
statements as it makes what we are doing entirely transparent, as well as
reinforcing our knowledge of the SQL language. See the next tip if you want to
know more.

Database cursors
Besides the classes that give us access to the database and the methods that allow us to
execute our queries, there is the issue of exactly how the results we get back from our
queries are formatted.

Fortunately, there is the Cursor class. All our database queries will return objects of
type Cursor. We can use the methods of the Cursor class to selectively access the data
returned from the queries, as here:

Log.i(c.getString(1), c.getString(2));

The previous code would output to logcat the two values stored in the first two columns
of the result that the query returned. It is the Cursor object itself that determines which
row of our returned data we are currently reading.

Telegram Channel @IRFaraExam

678 Android Databases

We can access a number of methods of the Cursor object, including the moveToNext
method, which unsurprisingly would move Cursor to the next row, ready for reading:

c.moveToNext();

/*

 This same code now outputs the data in the

 first and second column of the returned

 data but from the SECOND row.

*/

Log.i(c.getString(1), c.getString(2));

On some occasions, we will be able to bind Cursor to a part of our UI (such as
RecyclerView), as we did with an ArrayList instance in the Note to Self app, and
just leave everything to the Android API.

There are many more useful methods of the Cursor class, some of which we will see
soon.

Note
This introduction to the Android SQLite API really only scratches the surface
of its capabilities. We will bump into a few more methods and classes as we
proceed further. It is, however, worth studying further if your app idea requires
complex data management.

Now we can see how all this theory comes together and how we will structure our
database code in the Age Database app.

Coding the database class
Here we will put into practice everything we have learned so far and finish coding the
Age Database app. Before our Fragment classes from the previous section can interact
with a shared database, we need a class to handle interaction with, and the creation of, the
database.

Telegram Channel @IRFaraExam

Coding the database class 679

We will create a class that manages our database by using the SQLiteOpenHelper class.
It will also define some final strings to represent the names of the table and its columns.
Furthermore, it will supply a bunch of helper methods we can call to perform all the
necessary queries. Where necessary, these helper methods will return a Cursor object
that we can use to show the data we have retrieved. It would be trivial, then, to add new
helper methods, should our app need to evolve.

Create a new class called DataManager and add the following member variables:

import android.database.sqlite.SQLiteDatabase;

public class DataManager {

 // This is the actual database

 private SQLiteDatabase db;

 /*

 Next we have a public static final string for

 each row/table that we need to refer to both

 inside and outside this class

 */

 public static final String TABLE_ROW_ID = "_id";

 public static final String TABLE_ROW_NAME = "name";

 public static final String TABLE_ROW_AGE = "age";

 /*

 Next we have a private static final strings for

 each row/table that we need to refer to just

 inside this class

 */

 private static final String DB_NAME = "name_age_db";

 private static final int DB_VERSION = 1;

 private static final String TABLE_N_AND_A =

 "name_and_age";

}

Telegram Channel @IRFaraExam

680 Android Databases

Next, we add the constructor that will create an instance of our custom version of
SQLiteOpenHelper. We will actually implement this class as an inner class soon. The
constructor also initializes the db member, which is our SQLiteDatabase reference.

Add the following constructor that we have just discussed to the DataManager class:

public DataManager(Context context) {

 // Create an instance of our internal

 CustomSQLiteOpenHelper

 CustomSQLiteOpenHelper helper = new

 CustomSQLiteOpenHelper(context);

 // Get a writable database

 db = helper.getWritableDatabase();

}

Now we can add the helper methods we will access from our Fragment classes. Start with
the insert method, which executes an INSERT SQL query based on the name and age
parameters passed into the method.

Add the insert method to the DataManager class:

// Here are all our helper methods

// Insert a record

public void insert(String name, String age){

 // Add all the details to the table

 String query = "INSERT INTO " + TABLE_N_AND_A + " (" +

 TABLE_ROW_NAME + ", " +

 TABLE_ROW_AGE +

 ") " +

 "VALUES (" +

 "'" + name + "'" + ", " +

 "'" + age + "'" +

 ");";

Telegram Channel @IRFaraExam

Coding the database class 681

 Log.i("insert() = ", query);

 db.execSQL(query);

}

This next method called delete will delete a record from the database if it has a value in
the name column that matches the passed-in name parameter. It achieves this using the
SQL DELETE keyword.

Add the delete method to the DataManager class:

// Delete a record

public void delete(String name){

 // Delete the details from the table if already exists

 String query = "DELETE FROM " + TABLE_N_AND_A +

 " WHERE " + TABLE_ROW_NAME +

 " = '" + name + "';";

 Log.i("delete() = ", query);

 db.execSQL(query);

}

Next, we have the selectAll method, which also does as the name suggests. It achieves
this with a SELECT query using the * parameter, which is equivalent to specifying all the
columns individually. Also, note that the method returns a Cursor instance, which we
will use in some of the Fragment classes.

Add the selectAll method to the DataManager class:

// Get all the records

public Cursor selectAll() {

 Cursor c = db.rawQuery("SELECT *" +" from " +

 TABLE_N_AND_A, null);

 return c;

}

Telegram Channel @IRFaraExam

682 Android Databases

Now we add a searchName method that has a String parameter for the name the user
wants to search for. It also returns a Cursor instance that will contain all the entries that
were found. Notice that the SQL statement uses SELECT, FROM, and WHERE to achieve
this:

// Find a specific record

public Cursor searchName(String name) {

 String query = "SELECT " +

 TABLE_ROW_ID + ", " +

 TABLE_ROW_NAME +

 ", " + TABLE_ROW_AGE +

 " from " +

 TABLE_N_AND_A + " WHERE " +

 TABLE_ROW_NAME + " = '" + name + "';";

 Log.i("searchName() = ", query);

 Cursor c = db.rawQuery(query, null);

 return c;

}

Finally, for the DataManager class, we create an inner class that will be our
implementation of SQLiteOpenHelper. It is a barebones implementation.

We have a constructor that receives a Context object, the database name, and the
database version.

We also override the onCreate method that has the SQL statement, which creates our
database table with _ID, name, and age columns.

The onUpgrade method is left intentionally blank for this app.

Add the inner CustomSQLiteOpenHelper class to the DataManager class:

// This class is created when our DataManager is initialized

private class CustomSQLiteOpenHelper extends SQLiteOpenHelper {

 public CustomSQLiteOpenHelper(Context context) {

Telegram Channel @IRFaraExam

Coding the database class 683

 super(context, DB_NAME, null, DB_VERSION);

 }

 // This runs the first time the database is created

 @Override

 public void onCreate(SQLiteDatabase db) {

 // Create a table for photos and all their details

 String newTableQueryString = "create table "

 + TABLE_N_AND_A + " ("

 + TABLE_ROW_ID

 + " integer primary key

 autoincrement not null,"

 + TABLE_ROW_NAME

 + " text not null,"

 + TABLE_ROW_AGE

 + " text not null);";

 db.execSQL(newTableQueryString);

 }

 // This method only runs when we increment DB_VERSION

 @Override

 public void onUpgrade(SQLiteDatabase db,

int oldVersion, int newVersion) {

// Not needed in this app

// but we must still override it

 }

}

Now we can add code to our Fragment classes to use our new DataManager class.

Telegram Channel @IRFaraExam

684 Android Databases

Coding the Fragment classes to use the
DataManager class
Add this highlighted code to the InsertFragment class to update the onCreateView
method:

View v = inflater.inflate(R.layout.content_insert,

 container, false);

final DataManager dm =

 new DataManager(getActivity());

Button btnInsert =

 v.findViewById(R.id.btnInsert);

final EditText editName =

 v.findViewById(R.id.editName);

final EditText editAge =

 v.findViewById(R.id.editAge);

btnInsert.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 dm.insert(editName.getText().toString(),

 editAge.getText().toString());

 }

});

return v;

In the code, we get an instance of our DataManager class and a reference to each of our
UI widgets. Then, in the onClick method, we use the insert method to add a new
name and age to the database. The values to insert are taken from the two EditText
widgets.

Telegram Channel @IRFaraExam

Coding the Fragment classes to use the DataManager class 685

Add this highlighted code to the DeleteFragment class to update the onCreateView
method:

View v = inflater.inflate(R.layout.content_delete,

 container, false);

final DataManager dm =

 new DataManager(getActivity());

Button btnDelete =

 v.findViewById(R.id.btnDelete);

final EditText editDelete =

 v.findViewById(R.id.editDelete);

btnDelete.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 dm.delete(editDelete.getText().toString());

 }

});

return v;

In the DeleteFragment class, we create an instance of our DataManager class and
then get a reference to the EditText and Button widgets from our layout. When the
button is clicked, the delete method is called, passing in the value of any text from the
EditText widget that the user has entered. The delete method searches our database
for a match, and if one is found, it deletes it.

Add this highlighted code to the SearchFragment class to update the onCreateView
method:

View v = inflater.inflate(R.layout.content_search,

 container,false);

Button btnSearch =

 v.findViewById(R.id.btnSearch);

Telegram Channel @IRFaraExam

686 Android Databases

final EditText editSearch =

 v.findViewById(R.id.editSearch);

final TextView textResult =

 v.findViewById(R.id.textResult);

// This is our DataManager instance

final DataManager dm =

 new DataManager(getActivity());

btnSearch.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 Cursor c = dm.searchName(

 editSearch.getText().toString());

 // Make sure a result was found before using the

 Cursor

 if(c.getCount() > 0) {

 c.moveToNext();

 textResult.setText("Result = " +

 c.getString(1) + " - " +

 c.getString(2));

 }

 }

});

return v;

As we do for all our different Fragment classes, we create an instance of the
DataManager class and get a reference to all the different UI widgets in the layout. In
the onClick method, the searchName method is used, passing in the value from the
EditText widget. If the database returns a result in the Cursor instance, then the
TextView widget uses its setText method to output the results.

Telegram Channel @IRFaraExam

Coding the Fragment classes to use the DataManager class 687

Add this highlighted code to the ResultsFragment class to update the
onCreateView method:

View v = inflater.inflate(R.layout.content_results,

 container, false);

// Create an instance of our DataManager

DataManager dm =

 new DataManager(getActivity());

// Get a reference to the TextView to show the results

TextView textResults =

 v.findViewById(R.id.textResults);

// Create and initialize a Cursor with all the results

Cursor c = dm.selectAll();

// A String to hold all the text

String list = "";

// Loop through the results in the Cursor

while (c.moveToNext()){

 // Add the results to the String

 // with a little formatting

 list+=(c.getString(1) + " - " + c.getString(2) + "\n");

}

// Display the String in the TextView

textResults.setText(list);

return v;

In this class, the Cursor instance is loaded up with data using the selectAll method
before any interactions take place. The contents of Cursor are then output into the
TextView widget by concatenating the results. \n in the concatenation is what creates a
new line between each result in the Cursor instance.

Telegram Channel @IRFaraExam

688 Android Databases

Running the Age Database app
Let's run through some of the functions of our app to make sure it is working as expected.

First, I added a new name to the database using the Insert menu option:

Figure 27.3 – Insert menu

Then I confirmed it was there by viewing the Results option:

Figure 27.4 – Results option

Telegram Channel @IRFaraExam

Running the Age Database app 689

After that, I added a few more names and ages just to fill the database up a little bit:

Figure 27.5 – Filling the database

Then I used the Delete menu option and looked at the Results option again to check that
my chosen name was in fact removed:

Figure 27.6 – Delete menu

I then searched for a name that I knew existed to test the Search menu option:

Figure 27.7 – Search menu

Let's review what we have done in this chapter.

Telegram Channel @IRFaraExam

690 Android Databases

Summary
We have covered a lot in this chapter. We have learned about databases and in
particular the database used by Android apps, SQLite. We have practiced the basics of
communicating with a database using the SQL language.

We have seen how the Android API helps us use a SQLite database and have implemented
our first working app with a database.

You have come a long way and have reached the end of the book. Let's talk about what
might come next.

Telegram Channel @IRFaraExam

28
A Quick Chat before

You Go
We are just about done with our journey. This chapter gives just a few ideas and pointers
that you might like to look at before rushing off and making your own apps:

• Publishing

• Making your first app

• Keep learning

• Thanks

Telegram Channel @IRFaraExam

692 A Quick Chat before You Go

Publishing
You easily know enough to design your own app. You could even just make some
modifications to one of the apps from this book.

I decided not to include a step-by-step guide to publishing on Google's Play Store because
the steps are not complicated. They are, however, quite in-depth and a little laborious.
Most of the steps involve entering personal information about you and your app as well as
images. Such a tutorial would read something like this:

1. Fill this text box.

2. Now fill that text box.

3. Upload this image.

4. And so on.

Not much fun, and not very useful.

To get started, you just need to visit https://play.google.com/apps/publish
and pay a modest one-off fee (around $25, depending on your region's currency). This
allows you to publish games for life.

Note
If you want a checklist for publishing, take a look at this link, https://
developer.android.com/distribute/best-practices/
launch/launch-checklist.html, but you will find the process
intuitive (if very drawn out).

Make an app!
You could ignore everything else in this chapter if you just put this one thing into practice:

Don't wait until you are an expert before you start making apps!

Start building your dream app, the one with all the features, that's going to take Google
Play by storm. A simple piece of advice, however, is this: do some planning first! But not
too much; then get started.

Telegram Channel @IRFaraExam

https://play.google.com/apps/publish

Keep learning 693

Have some smaller and more easily achievable projects on the sidelines: projects you
will be able to show to friends and family and that explore areas of Android that are new
to you. If you are confident in these apps, you could upload them on Google Play. If you
are worried about how they might be received by reviewers, then make them free and put
a note in the description about it being "just a prototype" or something similar.

If your experience is anything like mine, you will find that as you read, study, and build
apps, you will discover that your dream app can be improved in many ways and you will
probably be inspired to redesign it or even start again.

If you do this, I can guarantee that the next time you build the app you will do it in half
the time and twice as good, at least!

Keep learning
If you feel like you have come a long way, you are right. There is always more to learn,
however.

Keep reading
You will find that as you make your first app, you suddenly realize that there is a gap in
your knowledge that needs to be filled to make some feature come to life. This is normal
and guaranteed, so don't let it put you off. Think of how to describe the problem and
search for the solution on Google.

You might also find that specific classes in a project will grow beyond the practical and
maintainable. This is a sign that there is a better way to structure things and there is
probably a ready-made design pattern out there somewhere that will make your life easier.

To pre-empt this almost inevitability, why not study some patterns right away? One great
source is Head First: Java Design Patterns, available from all good book stores.

Telegram Channel @IRFaraExam

694 A Quick Chat before You Go

GitHub
GitHub allows you to search and browse code that other people have written and see how
they have solved problems. This is useful because seeing the file structure of classes and
then dipping into them often shows how to plan your apps from the start and prevents
you from starting off on the wrong path. You can even get a GitHub app that allows you
to do this from the comfort of your phone or tablet. Or, you can configure Android Studio
to save and share your projects to GitHub. For example, search for Android fragment
on the home page, www.github.com, and you will see more than 1,000 related projects
that you can snoop through:

Figure 28.1 – Android fragment result

Stack Overflow
If you get stuck, have a weird error, or get an unexplained crash, often the best place to
turn is Google. Do this and you will be surprised at how often Stack Overflow seems to be
prominent in the search results, and for good reason.

Stack Overflow allows users to post a description of their problem along with sample
code so the community can respond with answers. In my experience, however, it is rarely
necessary to post a question because there is almost always somebody who has had the
exact same problem.

Telegram Channel @IRFaraExam

http://www.github.com

Keep learning 695

Stack Overflow is especially good for bleeding-edge issues. If a new Android Studio
version has a bug or a new version of the Android API seems to not be doing what it
should, then you can be almost certain that a few thousand other developers around
the world are having the same problem as you. Then, some smart coder, often from the
Android development team itself, will be there with an answer.

Stack Overflow is also good for a bit of light reading. Go to the home page, www.
stackoverflow.com, type Android in the search box, and you will see a list of all the
latest problems that the Stack Overflow community is having:

Figure 28.2 – Android list

I am not suggesting that you dive in and start trying to answer them all just yet but
reading the problems and the suggestions will teach you a lot and you will probably find
that more often than you expect, you have the solution or at least an idea of the solution.

Telegram Channel @IRFaraExam

http://www.stackoverflow.com
http://www.stackoverflow.com

696 A Quick Chat before You Go

Android user forums
Also, it is well worth signing up to some Android forums and visiting them occasionally
to find out what the hot topics and trends are from a user's perspective. I won't list any
here because a quick web search is all that is required.

If you're serious about the topic, then you can attend some Android conferences where
you can rub shoulders with thousands of other developers and attend lectures. If this
interests you, do a web search for droidcon, Android Developer Days, and GDG DevFest.

Higher-level study
You can now read a wider selection of other Android books. I mentioned at the start
of this book that there are very few books, arguably even none, that teach Android
programming to readers with no Java experience. That was the reason I wrote this book.

Now that you have a good understanding of OOP and Java, as well as a brief introduction
to app design and the Android API, you are well placed to read the Android "beginner"
books for people who already know how to program in Java, like you now do.

These books are packed full of good examples that you can build or just read about to
reinforce what you have learned in this book, use your knowledge in different ways, and,
of course, learn some completely new stuff too.

It might also be worth reading further some pure Java books. It might be hard to believe,
having just waded through around 750 pages, but there is a whole lot more to Java than
there was time to cover here.

I could name some titles but the books with the largest number of positive reviews on
Amazon tend to be the ones worth exploring.

My other channels
Please keep in touch!

• gamecodeschool.com

• facebook.com/gamecodeschool

• twitter.com/gamecodeschool

• youtube.com/c/Gamecodeschool/videos

• linkedin.com/in/gamecodeschool

Telegram Channel @IRFaraExam

http://gamecodeschool.com
http://facebook.com/gamecodeschool
http://twitter.com/gamecodeschool
http://youtube.com/c/Gamecodeschool/videos
http://linkedin.com/in/gamecodeschool

Goodbye and thank you 697

Goodbye and thank you
I had a lot of fun writing this book. I know that's a cliché but it's also true. Most
importantly, though, I hope you managed to take something from it and use it as
a stepping stone for your future in programming.

You are perhaps reading this for a bit of fun or the kudos of releasing an app, a stepping
stone to a programming job, or maybe you actually will build an app that takes Google
Play by storm.

Whatever the case, a big thank you from me for buying this book and I wish you all the
best in your future endeavors.

I think that everybody has an app inside of them and all you need is to do enough work
to get it out of you.

Telegram Channel @IRFaraExam

Telegram Channel @IRFaraExam

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Telegram Channel @IRFaraExam

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

700 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Android Programming with Kotlin for Beginners

John Horton

ISBN: 978-1-78961-540-1

• Understand how Kotlin and Android work together

• Build a graphical drawing app using object-oriented programming(OOP) principles

• Add user interaction, data captures, sound, and animation to your apps

• Implement dialog boxes to capture input from the user

• Build a simple database app that sorts and stores the user's data

Telegram Channel @IRFaraExam

https://www.packtpub.com/product/android-programming-with-kotlin-for-beginners/9781789615401

Why subscribe? 701

Flutter Projects

Simone Alessandria

ISBN: 978-1-83864-777-3

• Design reusable mobile architectures that can be applied to apps at any scale

• Get up to speed with error handling and debugging for mobile application
development

• Apply the principle of composition over inheritance' to break down complex
problems into many simple problems

• Update your code and see the results immediately using Flutter's hot reload

• Identify and prevent bugs from reappearing with Flutter's developer tools

• Manage an app's state with Streams and the BLoC pattern

Telegram Channel @IRFaraExam

https://www.packtpub.com/product/flutter-projects/9781838647773

702 Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Telegram Channel @IRFaraExam

http://authors.packtpub.com
http://authors.packtpub.com

Index

A
abstract class 293, 294
access modifiers

class usage, controlling with 267
variable usage, controlling with 268

Activity class 503
Activity life cycle

thread, starting and stopping with 553
adaptive icons

reference link 73
addition operator 194
addNote method

modifying 431
Age Database app

running 688, 689
Android

design guidelines 607, 608
interacting, with app 164, 165
Java code, running on 9
learning 5
need for 3, 4
reference link 6
third edition 3
user forums 696
working 5

Android, animations 474
Android API 6
Android app

building 16-21
constituents 13
debugging, on Android emulator 22-25
deploying 21
lifecycle 164
options, deploying 21, 22
running, on Android emulator 22-25
running, on real device 25, 27

Android Application Package (APK) 9
Android coordinate system

about 512
bitmaps, creating 513
drawing 512, 513
plotting 512, 513

Android emulator
Android app, debugging on 22-25
Android app, running on 22-25
control panel 89, 90
exploring 89

Android emulator, using as real device
about 90
active apps, switching between 92
active apps, viewing 92
app drawer, accessing 91

Telegram Channel @IRFaraExam

704 Index

Android intents
about 438
activity, switching between 438, 439
data, passing between activities 439, 440

Android lifecycle
about 165, 166
phases 166, 167
phases, handling 167-169

Android lifecycle demo app
about 170
coding 170-173
output, examining 174, 175
running 173, 174

Android package index
reference link 15

Android resources 13, 14
Android Runtime (ART) 5, 300
Android SDK 9
Android's Java code structure

about 14
classes 15
methods 15, 16
packages 14, 15

Android SQLite API
about 674
database cursors 677, 678
queries, building 674-677
queries, executing 674-677
SQLiteDatabase class 674
SQLiteOpenHelper class 674

Android Studio
about 9
setting up 10-13

Android Studio Profiler tool 581-583
Android UI design

exploring 97
Android UI elements 300

Android version
detecting 586
handling 586

Android Virtual Device (AVD) 22
Angry Birds

classic swipe menu 634
animation, Android

features 477
animation demo app

about 479
laying out, with SeekBar widget 479-482
wiring up, with Java 488-499
XML animations, coding with

SeekBar widget 483-488
animation interpolators 478
animations, Android

designing in XML 474
instantiating 477

anonymous classes 324-327
anonymous inner class 325
AOSP Java code style, for contributors

reference link 361
app

best practices 692
publishing, on Googles Play Store 692
running, in German 468, 469
running, in Spanish 468, 469

app layout file, examining
about 35-37
UI Button elements 39
UI layout elements 37, 38
UI text elements 38, 39

application programming
interface (API) 71

ArrayList
about 405
adding, to Note to Self app 418

Telegram Channel @IRFaraExam

Index 705

enhanced for loop 407
using 405, 406

ArrayList instances
polymorphic 407, 408

ArrayList of notes
setting up 417

array-out-of-bounds exception 404
arrays

about 191
objects 395
polymorphic 407, 408
used, for handling large amount

of data 393-395
assignment operator 194
attributes

summary 138

B
Basic Activity project

activity_main.xml file 85-87
exploring 80
MainActivity.java file 81-85
MainActivity.java file, methods 87, 88

Basic Activity project template
file and folder structure,

exploring 79, 80
basic classes app

about 258-261
using 261, 262

Bfxr
URL 592

Bitmap class
about 502, 503
drawing with 502
summary 503

Bitmap initialization
exploring 508

bitmap manipulation demo app
about 518
graphic, adding to project 518-523

bitmaps
about 514
creating 513
inverting, to face opposite

direction 515-517
manipulating 514
rotating, to face up or down 517, 518

break keyword 217, 218
buttons

using, from layout 303-312
bytecode 5

C
CalendarView

adding 117, 118
Component Tree window, using 120
constraints, adding manually 121, 123
view, resizing in

ConstraintLayout 118-120
camel casing 186
Canvas class

about 502, 503
Activity content, setting 506
drawing with 502
instances, preparing of

required classes 505
objects, initializing 505
summary 503
using 504

Canvas demo app
about 506
Bitmap initialization, exploring 508
coding 507, 508

Telegram Channel @IRFaraExam

706 Index

Color.argb 510, 511
drawing, on screen 509, 510
project, creating 506

CardView
adding, to layout 153
dimensions, defining 152
layout files, including in

another layout 154-158
UI, building with 146, 147

casting 293
chaining

about 278. 356
used, for configuring DialogFragment

class 356-358
checkboxes, Widget Exploration app

coding 341
color, changing 343, 344
size, changing 344
transparency, changing 342

CheckBox widget 329, 330
class

about 8, 178, 191, 253
code 253
implementation 253, 254
object, declaring 254-258
object, initializing 254-258
object, using 254-258
usage, monitoring with

access modifiers 267
class access modifiers

about 267
default 267
public 267

code
repeating, with loops 213, 214

code comments 184, 185
Color.argb 510, 511
comparison operator 204

compiling 5
concatenation 200
conditional code 214
configuration qualifiers

about 619-621
limitations 621, 622

console 30
constant 278
constraint handles 121
ConstraintLayout

precise UI, building with 117
constructors

features 276
used, for setting up objects 274, 275

continue keyword 218
control flow statements 214
custom buttons

adding, to screen 562

D
Dalvik VM (DVM) 186
data

persisting, with
SharedPreferences 444, 445

reloading, with SharedPreferences 446
database

about 670, 671
SQLite 671
Structured Query Language (SQL) 671

database class
coding 678-683

database cursors 677, 678
DataManager class

used, for coding Fragment
classes 684-687

deadlock 547
decrement operator 196

Telegram Channel @IRFaraExam

Index 707

density-independent pixels (dp)
used, for sizing 138

de-serialization 452
development environment 9
device detection mini-app

about 611-614
MainActivity class, coding 615, 616
running 617-619
screen orientation, unlocking 616

Dialog Demo project
creating 354

DialogFragment class
coding 354-356
configuring, with chaining 356-358
using 358-361

dialog windows 354
division operator 195
dots per inch (dpi) 75
do while loop 213-219
drivers 9
dynamic array

example 398, 399

E
EditText widget 321
Empty Activity project

exploring 64-66
java folder 69-71
Java (generated) folder 72
manifests folder 66-69

Empty Activity project, res folder
about 72
drawable folder 72, 73
layout folder 73, 74
mipmap folder 74, 75
values folder 75

Empty Activity project template
file and folder structure, exploring 63

encapsulation
about 251, 266
achieving 266
features, using 274

Expressing Yourself demo app 197-200
expressions

about 197
trying out 197

Extensible Markup Language
(XML) 62, 97

F
file and folder structure

of Basic Activity project template,
exploring 79, 80

of Empty Activity project
template, exploring 63

floating action button
coding 386-389

folders
adding, for English speakers 464
adding, for German speakers 464
adding, for Spanish speakers 464

for loop 213, 220
fragment

about 179, 180, 622
lifecycle 179, 180, 622, 623
managing, with

FragmentManager 623, 624
reality check 631, 632
using 660

Fragment app
building 624-631

Telegram Channel @IRFaraExam

708 Index

Fragment classes
coding 653-657
coding, to use DataManager

class 684-687
empty files, creating 654
holder, adding to main layout 661, 662
lifecycle 622, 623
layouts, coding 653
MainActivity.java class, coding 662-667
Navigation Drawer menu,

editing 660, 661
Fragment layouts

coding 653
content_delete.xml, designing 658
content_insert.xml, designing 657
content_results.xml, designing 660
content_search.xml, designing 659
designing 657
empty files, creating 654
holder, adding to main layout 661, 662
MainActivity.java class, coding 662-667
Navigation Drawer menu,

editing 660, 661
using 660

G
game loop

about 543-545
implementing, with thread 550

garbage collects 301
generated XML

examining 102
generics automatic type inference 303
German language support

adding 464, 465
getters

used, for accessing private

variables 271-273
GitHub app 694
Global Positioning System (GPS) 90
Googles Play Store

app, publishing on 692
graphical mask 72
gravity

using 145, 146
greater than operator 204
greater than or equal to operator 205

H
heap

about 300
facts 301, 302
using 302, 303

hexadecimal code 77
hex colors

reference link 77
HUD

finishing 578

I
image gallery/slider app

building 634, 635
layout, implementing 635, 636
MainActivity class, coding 640, 641
PagerAdapter class, coding 636-640
running 642, 643

ImageView class
about 503
drawing with 502
summary 503

ImageView widget 321, 322
increment operator 196
infinite loop 217

Telegram Channel @IRFaraExam

inheritance
about 252, 286
example app 287-291

inner class 315
instance 8, 250
int variable 188
Integrated Development

Environment (IDE) 2, 10
interfaces

about 294
using 295, 296

interpolators 479

J
jargon 183
Java

about 182
animation demo app, wiring

up with 488-499
learning 5
need for 3, 4
third edition 3
working 5

Java code
comments, marking 51, 52
structure 178, 179
translations, working in 469-471
used, for controlling Android

animations 477
writing 53, 54

Java collections 409
Java decisions

code, indenting 202, 203
making 202
operators 203

operators, used for testing variables 206
switch, using 210, 211

Java Development Kit (JDK) 9
Java else keyword 207
Java exceptions

about 454
 catch 453, 454
 finally 453, 454
try 453, 454

Java HashMap 409, 410
Java if keyword

using 206-210
Java Meet UI

building 303-305
running 313, 314

Java methods
about 228
demo apps, using 236
output, examining 58, 59
reviewing 228
structure 229, 230
writing 56, 57

Java methods, structure
body 235, 236
modifier 230
name 233, 234
parameters 234, 235
return type 231-233

Java project
exploring 31
MainActivity.java file, examining 32
main layout XML, exploring 32

JavaScript Object Notation (JSON) 452
Java syntax

about 183
code comments 184, 185

Telegram Channel @IRFaraExam

710 Index

K
key-value pairs 440
keywords 183

L
layout project

creating 98, 99
exploring 98, 99

layouts
about 98
adding, within layouts 110-114
customizing 115, 116

layout_weight property
using 143-145

less than operator 204
less than or equal to operator 205
LinearLayout

adding, to project 100, 101
layout, building with 99

listeners 477, 478
live drawing app

running 579, 580
Live Drawing project

creating 526
LiveDrawingActivity class 528
LiveDrawingActivity class,

coding 529-531
LiveDrawingView class 528
LiveDrawingView class, coding 532, 534
locking, to fullscreen 527, 528
locking, to landscape

orientation 527, 528
MainActivity, refactoring to

LiveDrawingActivity 526
Particle class 528
ParticleSystem class 528

placeholder classes 528
running 558

LiveDrawingView class
draw method 542
particle systems, spawning in 572, 573
SurfaceView class 542

LiveDrawingView class, coding
about 534, 535
draw method, coding 539, 540
LiveDrawingView constructor,

coding 538, 539
member variables, adding 535-537
printDebuggingText method,

adding 541
local variables 254
locking 547
logcat 30
logcat output

examining 30
filtering 31

logical AND operator 205
logical NOT operator 204
logical OR operator 205
loops

code, repeating with 213, 214
demo app 221-225

M
MainActivity.java file, Java project

app layout file, examining 35-37
class declaration 34
classes, importing 33
code folding (holding), in

Android Studio 33
exploring 32
Java codes 35
methods, in class 34

Telegram Channel @IRFaraExam

Index 711

package declaration 33
main layout file

button, adding by editing
XML code 45-47

buttons, adding 39
buttons, adding via visual

designer 40, 41
button's attribute, editing 42-44
buttons call different

methods, creating 51
buttons, positioning in 48-51
unique id attributes, assigning

to buttons 47, 48
XML code, examining for

new button 44, 45
main menu

linking back 134, 135
margin

using 142, 143
match

used, for determining size of
UI elements 140, 142

Material Design 96
Matrix class 515
member variables 254
memory management

warning 250
messages

coding, to user and developer 52
method access 271
method access modifiers 269, 270
method overloading 239-242
method overriding 165, 241
method recursion 243-246
methods 15
model-view-controller (MVC) pattern

about 606, 607
controller 607

model 606
view 606

modulus operator 206
multidimensional array mini app

creating 400-403
multiline TextView

adding, to UI 106, 107
multiple widgets

displaying, issue 414
displaying, solution 415

multiplication operator 195

N
NavigationView 646, 647
nesting 112
NOT equal operator 204
Note to Self app

about 361-366, 411
code files, obtaining for 362
Dialog designs, implementing 370-374
DialogNewNote class, coding 375-379
DialogShowNote class, coding 379-383
naming conventions, using 361
Note class, coding 368, 370
project, building 366
running 433, 434
settings page, adding to 441
string resources, preparing 366, 367
string resources, using 361
user data, backing up 454-461

Note to Self app, dialog boxes
coding 375
unwanted autogenerated

fragments, removing 383
Note to Self app, new dialogs

floating action button, coding 386-389
showing 383-386

Telegram Channel @IRFaraExam

712 Index

Note to Self app, user settings
creating 446
MainActivity class, coding 449-451
SettingsActivity class, coding 446-449

nth dimension
with arrays 400

NullPointerException 302
number systems and bases

reference link 77

O
object-oriented programming (OOP)

about 7, 8, 250, 252, 285
benefits 252
encapsulation 251
inheritance 252
polymorphism 251

objects
about 8
declaring 318, 319
initializing 318, 319
principles 251
setting up, with constructors 274, 275

onCreate method
code, adding 168 , 430, 431
message code, adding to 54, 55
output, examining 55

onDestroy method 169
onPause method 168
onResume method 168
onStart method 168
onStop method 168
onTouchEvent method

coding 576,-578
operators

about 203

comparison operator 204
greater than operator 204
greater than or equal to operator 205
less than operator 204
less than or equal to operator 205
logical AND operator 205
logical NOT operator 204
logical OR operator 205
modulus operator 206
NOT equal operator 204
used, for testing variables 206

Oracle Java tutorials
reference link 197

overridden methods 176, 177

P
package 14, 178
padding

using 142, 143
paging 633
Paint class

about 503
summary 503

palette
exploring 320

parameters 234
Particle class

coding 564-566
ParticleSystem class

coding 566-572
particle system effect

implementing 563, 564
particle systems

spawning, in LiveDrawingView
class 572, 573

polymorphism 251, 292

Telegram Channel @IRFaraExam

Index 713

precise UI
building, with ConstraintLayout 117

precise UI, building with
ConstraintLayout

about 117
CalendarView, adding 117
text, making clickable 127, 128
UI elements, adding 123-126
UI elements, constraining 123-126

primitive types 187-190
private variables

accessing, with getters 271-273
accessing, with setters 271-273

project anatomy 62
Project Explorer 62

Q
qualifiers 75

R
RadioButton widget 322, 323
Random class 392
random numbers

creating 392
real-world apps 608-611
real-world methods

about 236-238
variable scope, discovering 238

RecyclerAdapter class
about 414
adding, to Note to Self app 418
coding 421-425
getItemCount, coding 428
ListItemHolder inner class,

coding 428, 429

MainActivity, coding to use 429
NoteAdapter constructor, coding 425
onBindViewHolder method,

coding 426, 427
onCreateViewHolder

method, coding 426
setting up 417
using 415-417

RecyclerView class
about 414
adding 418, 419
adding, to Note to Self app 418
list item, creating 419-421
MainActivity, coding to use 429
setting up 417
using 415-417

references 300, 301
reference types 190
run method

coding 554-557
providing 550

Runnable
implementing 550

S
scalable pixels (sp)

about 104
used, for sizing fonts 139

scope
reviewing 242, 243

screen
custom buttons, adding to 562

ScrollView
UI, building with 146, 147

SeekBar widget
about 479

Telegram Channel @IRFaraExam

714 Index

used, for coding XML
animations 483-488

used, for laying out animation
demo app 479-482

serialization 452
setters

used, for accessing private
variables 271, 272

settings page, adding to Note to Self app
about 440
SettingsActivity, creating 441
settings screen layout, designing 442
user, enabling to switch to

settings screen 442-444
SharedPreferences

data, persisting with 444, 445
data, reloading with 446
data, storing with 452

Show Note button
removing 418, 419

showNote method
coding 432

simple array example mini-app 396, 397
Simple Database app

Delete option 649, 650
examining 647, 648
Insert option 649
Results option 650
Serach option 650

Simple Database project
exploring 652, 653
starting 651, 652

Software Development Kit (SDK) 2
sound demo app

about 592
coding 598-604
laying out 595-598
sound effects, making 592-595

SoundPool
initializing, with AudioAttributes

object 587-589
sound files, loading into memory 589
sound, playing 590
sound, stopping 591

SoundPool class 587
Spanish language support

adding 464
Spinner widget 592
SQLite 671
SQLiteDatabase class 674
SQLite example code

about 671, 672
database structure, updating 674
data, inserting into database 673
data, retrieving from database 673
table, creating 672

SQLite keywords
reference link 672

SQLiteOpenHelper class 674
SQLite types

reference link 672
SQL syntax primer 671
SQL types

integer 672
real 672
text 672

stack
about 300
facts 301, 302

Stack Overflow
about 694, 695
URL 695

static methods 277, 278
static methods mini-app 279-284
string 68, 188, 190, 191
string identifier 467

Telegram Channel @IRFaraExam

Index 715

string resources
adding 465-467

Structured Query Language (SQL) 671
sub class 287
sub-packages 14
subtraction operator 195
super class 287
switch

about 210
demo app 211-213

Switch widget 328, 329

T
table 671
table columns

organizing 132, 133
TableLayout

Component Tree, using 130-132
data, laying out with 128
TableRow element, adding 129

tablet emulator
creating 158-160

TextClock widget 330, 331
TextView widgets

about 38
adding, to UI 103-106
using, from layout 303-312

this keyword 276
thread

about 546
coding 551
game loop, implementing with 550
issues 547-550
starting 552, 553
starting and stopping, with

Activity life cycle 553
stopping 552, 553

touches
handling 574-576

translations
working, in Java code 469-471

U
UI, building with CardView

and ScrollView
about 146, 147
card content, creating 149,-152
image resources, adding 147, 148
view, setting with Java code 147

UI widgets
creating, from pure Java

without XML 319, 320
User Interface (UI)

about 13, 354
wiring up, with Java code 108-117

V
values folder files, Empty Activity project

colors.xml file 76, 77
strings.xml file 77-79

values in variables, modifying
with operators

about 194
addition operator 194
assignment operator 194
decrement operator 196
division operator 195
increment operator 196
multiplication operator 195
subtraction operator 195

variable access 269

Telegram Channel @IRFaraExam

716 Index

variable access modifiers
about 268
default 269
private 269
protected 268
public 268

variables
about 185
data, storing with 185, 186
data, using with 185, 186
declaration 192
initialization 193, 194
reviewing 242, 243
types 187
usage, monitoring with

access modifiers 268
using 192

variables, reference types
arrays 191
classes 191
Strings 190, 191

variables, types
primitive types 187-190
reference types 190

view 112
viewgroup 112
virtual machine (VM) 183

W
WebView

using 331, 348, 349
while loop

about 213- 217
break keyword 217

break keyword, using 218
continue keyword 218

Widget Exploration app
about 331
anonymous class, using for

regular Button 347
checkboxes, coding 341
coding 339, 340
radio buttons, coding 345, 346
reference, obtaining to all

parts of UI 340, 341
running 349-352
setting up 332-335
Switch widget, coding 348
UI layout, setting up 332-339

widgets 39
workspace

preparing 101
wrap

used, for determining size of
UI elements 140, 142

X
XML, animations designing

about 474
animations, rotating 476
duration, controlling 475
items, fading in 474
items, fading out 474
objects, moving 474
objects, scaling 475
objects, stretching 475
properties, combining with set 476
repeatCount property, adding 476
repeatMode property, adding 476

Telegram Channel @IRFaraExam

Telegram Channel @IRFaraExam

Telegram Channel @IRFaraExam

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Chapter 1: Beginning Android and Java
	Technical requirements
	What's new in the third edition?
	Why Java and Android?
	The beginner's first stumbling block
	How Java and Android work together
	Understanding the Android API
	Java is object-oriented
	Run that by me again – what exactly is Android?
	Android Studio

	Setting up Android Studio
	What makes an Android app?
	Android resources

	The structure of Android's Java code
	Packages
	Classes
	Methods

	Building our first Android app
	Deploying the app so far
	Running and debugging the app on
an Android emulator
	Running the app on a real device

	Frequently asked questions
	Summary

	Chapter 2: First Contact: Java, XML, and the UI Designer
	Technical requirements
	Examining the logcat output
	Filtering the logcat output

	Exploring the project Java and the
main layout XML
	Examining the MainActivity.java file
	Examining the app layout file

	Adding buttons to the main layout file
	Adding a button via the visual designer
	Adding a button by editing the XML code
	Giving the buttons unique id attributes
	Positioning the two buttons in the layout
	Making the buttons call different methods

	Leaving comments in our Java code
	Coding messages to the user and the developer
	Writing our first Java code
	Adding message code to the onCreate method
	Writing our own Java methods

	Frequently asked questions
	Summary

	Chapter 3: Exploring Android Studio and the Project Structure
	Technical requirements
	Project Explorer and project anatomy
	Exploring the file and folder structure of the Empty Activity project template
	Exploring an Empty Activity project

	Exploring the file and folder structure of the Basic Activity project template
	Exploring a Basic Activity project
	Exploring the Android emulator
	Emulator control panel
	Using the emulator as a real device

	Summary

	Chapter 4: Getting Started with Layouts and Material Design
	Technical requirements
	Finding out about Material Design
	Exploring Android UI design
	Introducing layouts
	Creating and exploring a layout project
	Building a layout with LinearLayout
	Adding a LinearLayout layout type to a project
	Preparing your workspace
	Examining the generated XML
	Adding a TextView to the UI
	Wiring up the UI with the Java code (Part 1)
	Adding layouts within layouts
	Making the layout look pretty
	Wiring up the UI with Java code (Part 2)

	Building a precise UI with ConstraintLayout
	Adding a CalendarView
	Adding and constraining more UI elements
	Making the text clickable

	Laying out data with TableLayout
	Adding a TableRow element to TableLayout
	Organizing the table columns

	Linking back to the main menu
	Summary

	Chapter 5: Beautiful Layouts with CardView and ScrollView
	Technical requirements
	Attributes quick summary
	Sizing using dp
	Sizing fonts using sp
	Determining size with wrap or match
	Using padding and margin
	Using the layout_weight property
	Using gravity

	Building a UI with CardView and ScrollView
	Setting the view with Java code
	Adding image resources
	Creating the contents for the cards
	Defining dimensions for CardView
	Adding CardView to our layout

	Creating a tablet emulator
	Frequently asked question
	Summary

	Chapter 6: The Android Lifecycle
	Technical requirements
	The life and times of an Android app
	How Android interacts with our apps
	A simplified explanation of the
Android lifecycle
	The lifecycle phases demystified

	How we handle the lifecycle phases
	Lifecycle demo app
	Coding the lifecycle demo app
	Running the lifecycle demo app
	Examining the lifecycle demo app output
	Some other overridden methods

	The structure of Java code – revisited
	Introducing fragments and the lifecycle
	Summary

	Chapter 7: Java Variables, Operators, and Expressions
	Technical requirements
	Java is everywhere
	Understanding Java syntax and jargon
	More code comments

	Storing and using data with variables
	Types of variables

	Using variables
	Variable declaration
	Variable initialization

	Changing values in variables with operators
	The assignment operator
	The addition operator
	The subtraction operator
	The division operator
	The multiplication operator
	The increment operator
	The decrement operator

	Trying out expressions
	Expressing Yourself demo app

	Summary

	Chapter 8: Java Decisions
and Loops
	Technical requirements
	Making decisions in Java
	Indenting code for clarity
	More operators
	How to use all these operators to test variables

	Switching to make decisions
	The switch demo app

	Repeating code with loops
	while loops
	do while loops

	for loops
	Loops demo app
	Summary

	Chapter 9: Learning Java Methods
	Technical requirements
	Methods revisited
	What exactly are Java methods?

	Method structure
	Modifier
	Return type
	Name of the method
	Parameters
	The body

	Using method demo apps
	Real-world methods

	Exploring method overloading
	Scope and variables revisited
	Method recursion
	Questions
	Summary
	Further reading

	Chapter 10: Object-Oriented Programming
	Technical requirements
	Important memory management warning
	Object-oriented programming
	What is OOP exactly?
	Why do it like this?
	Class recap

	Looking at the code for a class
	Class implementation
	Declaring, initializing, and using an object of the class

	Basic classes app
	More things we can do with our first class

	Frequently asked questions
	Summary

	Chapter 11: More
Object-Oriented Programming
	Technical requirements
	Remember that encapsulation thing?
	Controlling class use with access modifiers
	Controlling variable use with access modifiers
	Methods can have access modifiers too
	Accessing private variables with getters and setters
	Setting up our objects with constructors

	Static methods
	Encapsulation and static methods mini-app
	OOP and inheritance
	Inheritance example app
	Polymorphism
	Abstract classes
	Interfaces

	Frequently asked questions
	Summary

	Chapter 12: The Stack, the Heap, and the Garbage Collector
	Technical requirements
	All the Android UI elements are classes too
	Re-introducing references
	So how does this heap thing help me?
	Using buttons and TextView widgets from our layout
	Running the app

	Inner and anonymous classes
	Frequently asked questions
	Summary

	Chapter 13: Anonymous Classes – Bringing Android Widgets to Life
	Technical requirements
	Declaring and initializing the objects
	Creating UI widgets from pure Java without XML
	Exploring the palette – part 1
	The EditText widget
	The ImageView widget
	Radio buttons and groups

	Anonymous classes
	Exploring the palette and more anonymous classes – part 2
	Switch
	CheckBox
	TextClock
	Using WebView

	The Widget Exploration app
	Setting up the Widget Exploration project and UI
	Coding the Widget Exploration app

	Using WebView
	Running the Widget Exploration app
	Summary

	Chapter 14: Android Dialog Windows
	Technical requirements
	Dialog windows
	Creating the Dialog Demo project
	Coding a DialogFragment class
	Using the DialogFragment class

	The Note to Self app
	Using naming conventions and string resources
	How to get the code files for the Note to Self app
	The completed app
	Building the project
	Preparing the string resources
	Coding the Note class
	Implementing the dialog designs
	Coding the dialog boxes
	Showing our new dialogs

	Summary

	Chapter 15: Arrays, Maps, and Random Numbers
	Technical requirements
	A random diversion
	Handling large amounts of data with arrays
	Arrays are objects

	Simple array example mini-app
	Getting dynamic with arrays
	Dynamic array example

	Entering the nth dimension with arrays
	Multidimensional array mini-app
	Array-out-of-bounds exceptions

	ArrayList
	The enhanced for loop

	Arrays and ArrayList instances are polymorphic
	More Java collections – meet the Java HashMap
	The Note to Self app
	Frequently asked questions
	Summary

	Chapter 16: Adapters and Recyclers
	Technical requirements
	RecyclerView and RecyclerAdapter
	The problem with displaying lots of widgets
	The solution to the problem of displaying
lots of widgets
	How to use RecyclerView and RecyclerAdapter
	What we will do to set up RecyclerView with RecyclerAdapter and an ArrayList of notes

	Adding RecyclerView, RecyclerAdapter, and ArrayList to the Note to Self project
	Removing the temporary "Show Note" button and adding RecyclerView
	Creating a list item for RecyclerView
	Coding the RecyclerAdapter class
	Coding MainActivity to use the RecyclerView and RecyclerAdapter classes

	Running the app
	Frequently asked questions
	Summary

	Chapter 17: Data Persistence and Sharing
	Technical requirements
	Android intents
	Switching Activity
	Passing data between activities

	Adding a settings page to Note to Self
	Creating SettingsActivity
	Designing the settings screen layout
	Enabling the user to switch to the settings screen

	Persisting data with SharedPreferences
	Reloading data with SharedPreferences
	Making the Note to Self settings persist
	Coding the SettingsActivity class
	Coding the MainActivity class

	More advanced persistence
	What is JSON?
	Java exceptions – try, catch, and finally

	Backing up user data in Note to Self
	Frequently asked questions
	Summary

	Chapter 18: Localization
	Technical requirements
	Making the Note to Self app accessible for Spanish and German speakers
	Adding Spanish language support
	Adding German language support
	Adding the string resources

	Running Note to Self in German or Spanish
	Making the translations work in Java code

	Summary

	Chapter 19: Animations and Interpolations
	Technical requirements
	Animations in Android
	Designing cool animations in XML
	Instantiating animations and controlling them with Java code
	More animation features

	Animation demo app – introducing SeekBar
	Laying out the animation demo
	Coding the XML animations
	Wiring up the animation demo app with Java

	Frequently asked questions
	Summary

	Chapter 20 : Drawing Graphics
	Technical requirements
	Understanding the Canvas class
	Getting started drawing with Bitmap, Canvas, and ImageView

	Using the Canvas class
	Preparing the instances of the required classes
	Initializing the objects
	Setting the Activity content

	Canvas demo app
	Creating a new project

	The Android coordinate system
	Plotting and drawing

	Creating bitmaps
	Manipulating bitmaps
	What is a bitmap exactly?
	The Matrix class

	Bitmap manipulation demo app
	Adding the graphic to the project

	Frequently asked question
	Summary

	Chapter 21: Threads and Starting the Live Drawing App
	Technical requirements
	Creating the Live Drawing project
	Refactoring MainActivity to LiveDrawingActivity
	Locking the game to fullscreen and landscape orientation
	Looking ahead at the Live Drawing app
	Coding the LiveDrawingActivity class
	Coding the LiveDrawingView class
	Coding the LiveDrawingView class

	The game loop
	Threads
	Problems with threads

	Implementing the game loop with a thread
	Implementing Runnable and providing the run method
	Coding the thread
	Starting and stopping the thread
	Using the Activity lifecycle to start and stop the thread
	Coding the run method

	Running the app
	Summary

	Chapter 22: Particle Systems and Handling Screen Touches
	Technical requirements
	Adding custom buttons to the screen
	Implementing a particle system effect
	Coding the Particle class
	Coding the ParticleSystem class
	Spawning particle systems in the
LiveDrawingView class

	Handling touches
	Coding the onTouchEvent method
	Finishing the HUD

	Running the app
	The Android Studio Profiler tool
	Summary

	Chapter 23: Supporting Different Versions of Android, Sound Effects, and Spinner Widget
	Handling different versions of Android
	Detecting the current Android version

	The SoundPool class
	Initializing SoundPool the new way
	Initializing SoundPool the old way

	Sound demo app introducing the Spinner widget
	Making sound effects
	Laying out the sound demo
	Coding the sound demo

	Summary

	Chapter 24: Design Patterns, Multiple Layouts, and Fragments
	Technical requirements
	Introducing the model-view-controller pattern
	Android design guidelines
	Real-world apps
	Device detection mini-app
	Coding the MainActivity class
	Running the app

	Configuration qualifiers
	The limitation of configuration qualifiers

	Fragments
	Fragments have a lifecycle too
	Managing Fragments with FragmentManager

	Our first Fragment app
	Fragment reality check
	Frequently asked question
	Summary

	Chapter 25: Building a Simple Image Gallery App
	Technical requirements
	Angry Birds classic swipe menu
	Building an image gallery/slider app
	Implementing the layout
	Coding the PagerAdapter class
	Coding the MainActivity class
	Running the gallery app

	Summary

	Chapter 26: Advanced UI with Navigation Drawer and Fragment
	Technical requirements
	Introducing NavigationView
	Examining the Simple Database app
	Insert
	Delete
	Search
	Results

	Starting the Simple Database project
	Exploring the autogenerated code and assets
	Coding the Fragment classes and their layouts
	Creating the empty files for the classes and layouts
	Coding the classes
	Designing the layouts
	Designing content_insert.xml
	Designing content_delete.xml
	Designing content_search.xml
	Designing content_results.xml

	Using the Fragment classes and their layouts
	Editing the Navigation Drawer menu
	Adding a holder to the main layout
	Coding the MainActivity.java class

	Summary

	Chapter 27: Android Databases
	Technical requirements
	Databases 101
	What is a database?
	What is SQL?
	What is SQLite?

	SQL syntax primer
	SQLite example code

	Android SQLite API
	SQLiteOpenHelper and SQLiteDatabase
	Building and executing queries
	Database cursors

	Coding the database class
	Coding the Fragment classes to use the DataManager class
	Running the Age Database app
	Summary

	Chapter 28: A Quick Chat before You Go
	Publishing
	Make an app!
	Keep learning
	Keep reading
	GitHub
	Stack Overflow
	Android user forums
	Higher-level study

	My other channels
	Goodbye and thank you
	Why subscribe?

	Other Books You May Enjoy
	Index

